词条 | Catalan's conjecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
For Catalan's aliquot sequence conjecture, see aliquot sequence. Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu. The integers 23 and 32 are two powers of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive powers. That is to say, that the only solution in the natural numbers of for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3. HistoryThe history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (x, y) was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case b = 2.[1] In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a, b to give an effective upper bound for x,y,a,b. Michel Langevin computed a value of exp exp exp exp 730 for the bound.[2] This resolved Catalan's conjecture for all but a finite number of cases. Nonetheless, the finite calculation required to complete the proof of the theorem was too time-consuming to perform. Catalan's conjecture was proven by Preda Mihăilescu in April 2002. The proof was published in the Journal für die reine und angewandte Mathematik, 2004. It makes extensive use of the theory of cyclotomic fields and Galois modules. An exposition of the proof was given by Yuri Bilu in the Séminaire Bourbaki. GeneralizationIt is a conjecture that for every natural number n, there are only finitely many pairs of perfect powers with difference n. The list below shows, for n ≤ 64, all solutions for perfect powers less than 1018, as per {{oeis|id=A076427}}. See {{oeis|id=A103953}} for the smallest solution (> 0), and {{oeis|id=A076427}} for number of solutions (except 0) for a given n.
Pillai's conjecture{{unsolved|mathematics|Does each positive integer occur only finitely many times as a difference of perfect powers?}}Pillai's conjecture concerns a general difference of perfect powers {{OEIS|id=A001597}}: it is an open problem initially proposed by S. S. Pillai, who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers A, B, C the equation has only finitely many solutions (x,y,m,n) with (m,n) ≠ (2,2). Pillai proved that the difference for any λ less than 1, uniformly in m and n.[3]The general conjecture would follow from the ABC conjecture.[3][4] Paul Erdős conjectured {{citation needed|date=May 2017}} that there is some positive constant c such that if d is the difference of a perfect power n,{{clarify|ate=November 2015|date=November 2015}} then d>nc for sufficiently large n. See also
References1. ^{{cite journal | author=Victor-Amédée Lebesgue | authorlink=Victor-Amédée Lebesgue | title=Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1 | journal=Nouvelles annales de mathématiques | series=1re série | volume=9 | year=1850 | pages=178–181 }} 2. ^{{cite book | title=13 Lectures on Fermat's Last Theorem | first=Paulo | last=Ribenboim | authorlink=Paulo Ribenboim | publisher=Springer-Verlag | year=1979 | isbn=0-387-90432-8 | zbl=0456.10006 | page=236 }} 3. ^1 {{ cite book | pages=253–254 | title=Rational Number Theory in the 20th Century: From PNT to FLT | series=Springer Monographs in Mathematics | first=Wladyslaw | last=Narkiewicz | publisher=Springer-Verlag | year=2011 | isbn=0-857-29531-4 }} 4. ^{{cite book | last=Schmidt | first=Wolfgang M. | authorlink=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=Springer-Verlag | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020 | page=207 }}
External links
4 : Conjectures|Diophantine equations|Theorems in number theory|Conjectures that have been proved |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。