词条 | Cauchy index |
释义 |
In mathematical analysis, the Cauchy index is an integer associated to a real rational function over an interval. By the Routh–Hurwitz theorem, we have the following interpretation: the Cauchy index of r(x) = p(x)/q(x) over the real line is the difference between the number of roots of f(z) located in the right half-plane and those located in the left half-plane. The complex polynomial f(z) is such that f(iy) = q(y) + ip(y). We must also assume that p has degree less than the degree of q. Definition
Examples
We recognize in p(x) and q(x) respectively the Chebyshev polynomials of degree 3 and 5. Therefore, r(x) has poles , , , and , i.e. for . We can see on the picture that and . For the pole in zero, we have since the left and right limits are equal (which is because p(x) also has a root in zero). We conclude that since q(x) has only five roots, all in [−1,1]. We cannot use here the Routh–Hurwitz theorem as each complex polynomial with f(iy) = q(y) + ip(y) has a zero on the imaginary line (namely at the origin). External links
1 : Mathematical analysis |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。