请输入您要查询的百科知识:

 

词条 Edmonds matrix
释义

  1. References

In graph theory, the Edmonds matrix of a balanced bipartite graph with sets of vertices and is defined by

where the xij are indeterminates. One application of the Edmonds matrix of a bipartite graph is that the graph admits a perfect matching if and only if the polynomial det(Aij) in the xij is not identically zero. Furthermore, the number of perfect matchings is equal to the number of monomials in the polynomial det(A), and is also equal to the permanent of . In addition, rank of is equal to the maximum matching size of .

The Edmonds matrix is named after Jack Edmonds. The Tutte matrix is a generalisation to non-bipartite graphs.

References

  • {{cite book|author=R. Motwani, P. Raghavan |title=Randomized Algorithms |url=https://books.google.com/?id=QKVY4mDivBEC&pg=PR5#PPA167,M1 |publisher=Cambridge University Press|year=1995|page=167|isbn=9780521474658 }}
  • {{cite book|author=Allen B. Tucker|title=Computer Science Handbook|publisher=CRC Press|date=2004|isbn=1-58488-360-X|page=12.19}}
{{combin-stub}}

1 : Algebraic graph theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 9:18:12