请输入您要查询的百科知识:

 

词条 Centromere
释义

  1. Positions

      Metacentric    Submetacentric    Acrocentric    Telocentric    Subtelocentric    Holocentric    Acentric    Human chromosomes  

  2. Sequence

  3. Inheritance

  4. Structure

  5. Centromeric aberrations

  6. Dysfunction and disease

  7. Etymology and pronunciation

  8. See also

  9. References

      Further reading  
{{More footnotes|article|date=May 2011}}

The centromere is the specialized DNA sequence of a chromosome that links a pair of sister chromatids (a dyad).[1] During mitosis, spindle fibers attach to the centromere via the kinetochore.[2] Centromeres were first thought to be genetic loci that direct the behavior of chromosomes.

The physical role of the centromere is to act as the site of assembly of the kinetochores – a highly complex multiprotein structure that is responsible for the actual events of chromosome segregation – i.e. binding microtubules and signalling to the cell cycle machinery when all chromosomes have adopted correct attachments to the spindle, so that it is safe for cell division to proceed to completion and for cells to enter anaphase.[3]

There are, broadly speaking, two types of centromeres. "Point centromeres" bind to specific proteins that recognize particular DNA sequences with high efficiency.[4] Any piece of DNA with the point centromere DNA sequence on it will typically form a centromere if present in the appropriate species. The best characterised point centromeres are those of the budding yeast, Saccharomyces cerevisiae. "Regional centromeres" is the term coined to describe most centromeres, which typically form on regions of preferred DNA sequence, but which can form on other DNA sequences as well.[4] The signal for formation of a regional centromere appears to be epigenetic. Most organisms, ranging from the fission yeast Schizosaccharomyces pombe to humans, have regional centromeres.

Regarding mitotic chromosome structure, centromeres represent a constricted region of the chromosome (often referred to as the primary constriction) where two identical sister chromatids are most closely in contact. When cells enter mitosis, the sister chromatids (the two copies of each chromosomal DNA molecule resulting from DNA replication in chromatin form) are linked along their length by the action of the cohesin complex. It is now believed that this complex is mostly released from chromosome arms during prophase, so that by the time the chromosomes line up at the mid-plane of the mitotic spindle (also known as the metaphase plate), the last place where they are linked with one another is in the chromatin in and around the centromere.[5]

Positions

Each chromosome has two arms, labeled p (the shorter of the two) and q (the longer). Many remember that the short arm 'p' is named for the French word "petit" meaning 'small', although this explanation was shown to be apocryphal.[6] They can be connected in either metacentric, submetacentric, acrocentric or telocentric manner.[7][8]

Categorization of chromosomes according to the relative arms length[8]
style="background: bgcolor=lightblue>Centromere positionstyle="background: bgcolor=lightblue>Arms length ratiostyle="background: bgcolor=lightblue>Signstyle="background: bgcolor=lightblue>Description
Medial sensu stricto 1.0 – 1.6MMetacentric
Medial region1.7mMetacentric
Submedial3.0smSubmetacentric
Subterminal3.1 – 6.9stSubtelocentric
Terminal region7.0tAcrocentric
Terminal sensu stricto TTelocentric
style="background: bgcolor=lightblue>Notesstyle="background: bgcolor=lightblue>–'style="background: bgcolor=lightblue>Metacentric: M+mstyle="background: bgcolor=lightblue>Atelocentric: M+m+sm+st+t

Metacentric

These are X-shaped chromosomes, with the centromere in the middle so that the two arms of the chromosomes are almost equal.

A chromosome is metacentric if its two arms are roughly equal in length. In a normal human karyotype, five chromosomes are considered metacentric: chromosomes 1, 3, 16, 19, and 20. In some cases, a metacentric chromosome is formed by balanced translocation: the fusion of two acrocentric chromosomes to form one metacentric chromosome.[9][10]

Submetacentric

If arms' lengths are unequal, the chromosome is said to be submetacentric. Their shape is L shape.[11]

Acrocentric

If the p (short) arm is so short that it is hard to observe, but still present, then the chromosome is acrocentric (the "acro-" in acrocentric refers to the Greek word for "peak"). The human genome includes five acrocentric chromosomes: 13, 14, 15, 21, 22.[12] The Y chromosome is also acrocentric.[12]

In an acrocentric chromosome the p arm contains genetic material including repeated sequences such as nucleolar organizing regions, and can be translocated without significant harm, as in a balanced Robertsonian translocation. The domestic horse genome includes one metacentric chromosome that is homologous to two acrocentric chromosomes in the conspecific but undomesticated Przewalski's horse.[13] This may reflect either fixation of a balanced Robertsonian translocation in domestic horses or, conversely, fixation of the fission of one metacentric chromosome into two acrocentric chromosomes in Przewalski's horses. A similar situation exists between the human and great ape genomes; in this case, because more species are extant, it is apparent that the evolutionary sequence is a reduction of two acrocentric chromosomes in the great apes to one metacentric chromosome in humans (see Karyotype#Aneuploidy).[11]

Strikingly, harmful translocations in disease context, especially unbalanced translocations in blood cancers, more frequently involve acrocentric chromosomes than non-acrocentric chromosomes.[14] Although the cause is not known, this probably relates to the physical location of acrocentric chromosomes within the nucleus. Acrocentric chromosomes are usually located in and around the nucleolus, so in the center of the nucleus, where chromosomes tend to be less densely packed than chromosomes in the nuclear periphery.[15] Consistently, chromosomal regions that are less densely packed are also more prone to chromosomal translocations in cancers.[16]

Telocentric

A telocentric chromosome's centromere is located at the terminal end of the chromosome. A telocentric chromosome has therefore only one arm. Telomeres may extend from both ends of the chromosome, their shape is similar to letter "i" during anaphase. For example, the standard house mouse karyotype has only telocentric chromosomes.[17][18] Humans do not possess telocentric chromosomes.

Subtelocentric

If the chromosome's centromere is located closer to its end than to its center, it may be described as subtelocentric.[19][20]

Holocentric

With holocentric chromosomes, the entire length of the chromosome acts as the centromere. Examples of this type of centromere can be found scattered throughout the plant and animal kingdoms,[21] with the most well-known example being the nematode Caenorhabditis elegans.

Acentric

If a chromosome lacks a centromere, it is said acentric. The macronucleus of ciliates for example contains hundreds of acentric chromosomes.[22] Chromosome-breaking events can also generate acentric chromosomes or acentric fragments.

Human chromosomes

Table of human chromosomes with data on centromeres and sizes.
Chromosome Centromere
position (Mbp)
Category Chromosome
Size (Mbp)
Centromere
size (Mbp)
1 125.0 metacentric 247.2 7.4
2 93.3 submetacentric 242.8 6.3
3 91.0 metacentric 199.4 6.0
4 50.4 submetacentric 191.3
5 48.4 submetacentric 180.8
6 61.0 submetacentric 170.9
7 59.9 submetacentric 158.8
8 45.6 submetacentric 146.3
9 49.0 submetacentric 140.4
10 40.2 submetacentric 135.4
11 53.7 submetacentric 134.5
12 35.8 submetacentric 132.3
13 17.9 acrocentric 114.1
14 17.6 acrocentric 106.3
15 19.0 acrocentric 100.3
16 36.6 metacentric 88.8
17 24.0 submetacentric 78.7
18 17.2 submetacentric 76.1
19 26.5 metacentric 63.8
20 27.5 metacentric 62.4
21 13.2 acrocentric 46.9
22 14.7 acrocentric 49.5
X 60.6 submetacentric 154.9
Y 12.5 acrocentric 57.7

Sequence

There are two types of centromeres.[23] In regional centromeres, DNA sequences contribute to but do not define function. Regional centromeres contain large amounts of DNA and are often packaged into heterochromatin. In most eukaryotes, the centromere's DNA sequence consists of large arrays of repetitive DNA (e.g. satellite DNA) where the sequence within individual repeat elements is similar but not identical. In humans, the primary centromeric repeat unit is called α-satellite (or alphoid), although a number of other sequence types are found in this region.[24]

Point centromeres are smaller and more compact. DNA sequences are both necessary and sufficient to specify centromere identity and function in organisms with point centromeres. In budding yeasts, the centromere region is relatively small (about 125 bp DNA) and contains two highly conserved DNA sequences that serve as binding sites for essential kinetochore proteins.[24]

Inheritance

Since centromeric DNA sequence is not the key determinant of centromeric identity in metazoans, it is thought that epigenetic inheritance plays a major role in specifying the centromere.[25] The daughter chromosomes will assemble centromeres in the same place as the parent chromosome, independent of sequence. It has been proposed that histone H3 variant CENP-A (Centromere Protein A) is the epigenetic mark of the centromere.[26] The question arises whether there must be still some original way in which the centromere is specified, even if it is subsequently propagated epigenetically. If the centromere is inherited epigenetically from one generation to the next, the problem is pushed back to the origin of the first metazoans.

Structure

The centromeric DNA is normally in a heterochromatin state, which is essential for the recruitment of the cohesin complex that mediates sister chromatid cohesion after DNA replication as well as coordinating sister chromatid separation during anaphase. In this chromatin, the normal histone H3 is replaced with a centromere-specific variant, CENP-A in humans.[27] The presence of CENP-A is believed to be important for the assembly of the kinetochore on the centromere. CENP-C has been shown to localise almost exclusively to these regions of CENP-A associated chromatin. In human cells, the histones are found to be most enriched for H4K20me3 and H3K9me3[28] which are known heterochromatic modifications.

In the yeast Schizosaccharomyces pombe (and probably in other eukaryotes), the formation of centromeric heterochromatin is connected to RNAi.[29] In nematodes such as Caenorhabditis elegans, some plants, and the insect orders Lepidoptera and Hemiptera, chromosomes are "holocentric", indicating that there is not a primary site of microtubule attachments or a primary constriction, and a "diffuse" kinetochore assembles along the entire length of the chromosome.

Centromeric aberrations

In rare cases in humans, neocentromeres can form at new sites on the chromosome. There are currently over 90 known human neocentromeres identified on 20 different chromosomes.[30][31] The formation of a neocentromere must be coupled with the inactivation of the previous centromere, since chromosomes with two functional centromeres (Dicentric chromosome) will result in chromosome breakage during mitosis. In some unusual cases human neocentromeres have been observed to form spontaneously on fragmented chromosomes. Some of these new positions were originally euchromatic and lack alpha satellite DNA altogether.

Centromere proteins are also the autoantigenic target for some anti-nuclear antibodies, such as anti-centromere antibodies.

Dysfunction and disease

It has been known that centromere misregulation contributes to mis-segregation of chromosomes, which is strongly related to cancer and abortion. Notably, overexpression of many centromere genes have been linked to cancer malignant phenotypes. Overexpression of these centromere genes can increase genomic instability in cancers.[32] Elevated genomic instability on one hand relates to malignant phenotypes; on the other hand, it makes the tumor cells more vulnerable to specific adjuvant therapies such as certain chemotherapies and radiotherapy.[33] Instability of centromere repetitive DNA was recently shown in cancer and aging.[34]

Etymology and pronunciation

The word centromere ({{IPAc-en|ˈ|s|ɛ|n|t|r|ə|ˌ|m|ɪər}}[35][36]) uses combining forms of centro- and -mere, yielding "central part", describing the centromere's location at the center of the chromosome.

See also

  • Cell biology
  • Chromatid
  • Diploid
  • Genetics
  • Monopolin

References

1. ^{{cite book|last1=Alberts|first1=Bruce|last2=Bray|first2=Dennis|last3=Hopkin|first3=Karen|last4=Johnson|first4=Alexander|last5=Lewis|first5=Julian|last6=Raff|first6=Martin|last7=Roberts|first7=Keith|last8=Walter|first8=Peter|title=Essential Cell Biology|date=2014|publisher=Garland Science|location=New York, NY|isbn=978-0-8153-4454-4|page=183|edition=4}}
2. ^{{cite book|last=Pollard|first=T.D.|title=Cell Biology|year=2007|publisher=Saunders|location=Philadelphia|isbn=978-1-4160-2255-8|pages=200–203}}
3. ^{{cite book|last=Pollard|first=TD|title=Cell Biology|year=2007|publisher=Saunders|location=Philadelphia|isbn=978-1-4160-2255-8|pages=227–230}}
4. ^{{cite journal|last=Pluta|first=A. |author2=A.M. Mackay |author3=A.M. Ainsztein |author4=I.G. Goldberg |author5=W.C. Earnshaw|title=The centromere: Hub of chromosomal activities.|journal=Science|year=1995|volume=270|pages=1591–1594|pmid=7502067|doi=10.1126/science.270.5242.1591|issue=5242}}
5. ^{{cite web |url=http://ghr.nlm.nih.gov/glossary=sisterchromatidcohesion |title=Sister chromatid cohesion |date=May 15, 2011 |work=Genetics Home Reference |publisher=United States National Library of Medicine}}
6. ^{{cite web|url= http://thednaexchange.com/2011/05/02/p-q-solved-being-the-true-story-of-how-the-chromosome-got-its-name/|title= p + q = Solved, Being the True Story of How the Chromosome Got Its Name}}
7. ^{{Citation|last=Nikolay's Genetics Lessons|title=What different types of chromosomes exist?|date=2013-10-12|url=https://www.youtube.com/watch?v=0bfpOhbKEAk|accessdate=2017-05-28}}
8. ^Levan A., Fredga K., Sandberg A. A. (1964): Nomenclature for centromeric position on chromosomes. Hereditas, Lund, 52: 201.
9. ^{{cite web|url= http://atlasgeneticsoncology.org/Educ/PolyMecaEng.html|title= Chromosomes, Chromosome Anomalies}}
10. ^*{{cite journal | author=Gilbert F | title=Disease genes and chromosomes: disease maps of the human genome. Chromosome 16 | journal=Genet Test | year=1999 | pages=243–54 | volume=3 | issue=2 | pmid=10464676}}
11. ^https://www.amazon.com/Thompson-Genetics-Medicine-Sixth-Edition/dp/0721669026
12. ^{{Cite book|title=Thompson & Thompson GENETICS IN MEDICINE 7th Edition|last=|first=|publisher=|year=|isbn=|location=|pages=62}}
13. ^{{cite journal |pages=222–5 |doi=10.1159/000075753 |title=FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii) |year=2003 |last1=Myka |first1=J.L. |last2=Lear |first2=T.L. |last3=Houck |first3=M.L. |last4=Ryder |first4=O.A. |last5=Bailey |first5=E. |journal=Cytogenetic and Genome Research |volume=102 |pmid=14970707 |issue=1–4}}
14. ^{{citation | last1 = Lin | first1 = C.Y. | last2 = Shukla | first2 = A. | last3 = Grady | first3 = J.P. | last4 = Fink | first4 = J.L. | last5 = Dray | first5 = E. |last6 = Duijf | first6 = P.H.G. | year = 2018 | title = Translocation breakpoints preferentially occur in euchromatin and acrocentric chromosomes | journal = Cancers (Basel) | volume = 10 | issue = 1 | pages = E13 | doi = 10.3390/cancers10010013 | url = https://www.mdpi.com/2072-6694/10/1/13 | pmid = 29316705}}
15. ^{{citation | last1 = Bolzer | first1 = A. | last2 = et | first2 = al. | year = 2005 | title = Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. | journal = PLoS Biology | volume = 3 | pages = e157 | doi = 10.1371/journal.pbio.0030157 | url = https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030157 | pmid = 15839726}}
16. ^{{citation | last1 = Lin | first1 = C.Y. | last2 = Shukla | first2 = A. | last3 = Grady | first3 = J.P. | last4 = Fink | first4 = J.L. | last5 = Dray | first5 = E. |last6 = Duijf | first6 = P.H.G. | year = 2018 | title = Translocation breakpoints preferentially occur in euchromatin and acrocentric chromosomes | journal = Cancers (Basel) | volume = 10 | issue = 1 | pages = E13 | doi = 10.3390/cancers10010013 | url = https://www.mdpi.com/2072-6694/10/1/13 | pmid = 29316705}}
17. ^{{cite book |first=Lee M. |last=Silver |year=1995 |chapter=Karyotypes, Chromosomes, and Translocations |chapterurl=http://www.informatics.jax.org/silver/chapters/5-2.shtml |title=Mouse Genetics: Concepts and Applications |pages=83–92 |isbn=978-0-19-507554-0 |publisher=Oxford University Press |location=Oxford}}
18. ^{{cite journal |pages=520–62 |doi=10.1038/nature01262 |title=Initial sequencing and comparative analysis of the mouse genome |year=2002 |last1=Chinwalla |first1=Asif T. |last2=Cook |first2=Lisa L. |last3=Delehaunty |first3=Kimberly D. |last4=Fewell |first4=Ginger A. |last5=Fulton |first5=Lucinda A. |last6=Fulton |first6=Robert S. |last7=Graves |first7=Tina A. |last8=Hillier |first8=Ladeana W. |last9=Mardis |first9=Elaine R. |journal=Nature |volume=420 |issue=6915 |pmid=12466850|last10=McPherson |first10=J.D. |last11=Miner |first11=T.L. |last12=Nash |first12=W.E. |last13=Nelson |first13=J.O. |last14=Nhan |first14=M.N. |last15=Pepin |first15=K.H. |last16=Pohl |first16=C.S. |last17=Ponce |first17=T.C. |last18=Schultz |first18=B. |last19=Thompson |first19=J. |last20=Trevaskis |first20=E. |last21=Waterston |first21=R.H. |last22=Wendl |first22=M.C. |last23=Wilson |first23=R.K. |last24=Yang |first24=S.-P. |last25=An |first25=P. |last26=Berry |first26=E. |last27=Birren |first27=B. |last28=Bloom |first28=T. |last29=Brown |first29=D.G. |last30=Butler |first30=J. |display-authors=8 }}
19. ^{{Cite web|url=http://groups.molbiosci.northwestern.edu/holmgren/Glossary/Definitions/Def-S/subtelocentric_chromosome.html|title=subtelocentric chromosome definition|website=groups.molbiosci.northwestern.edu|access-date=2017-10-29}}
20. ^{{Cite book|url=https://books.google.com/books?id=tHjfvZRCCtwC|title=Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth|last=Margulis|first=Lynn|last2=Matthews|first2=Clifford|last3=Haselton|first3=Aaron|date=2000-01-01|publisher=MIT Press|isbn=9780262631976|language=en}}
21. ^{{cite journal |pages=F33–8 |doi= 10.1083/jcb.153.6.F33 |title=Here, There, and Everywhere: Kinetochore Function on Holocentric Chromosomes |year=2001 |last1=Dernburg |first1=A. F. |journal=The Journal of Cell Biology |volume=153 |issue=6 |pmid=11402076 |pmc=2192025}}
22. ^{{Cite book|title=Bioinformatics and Functional Genomics|last=Pevsner|first=Jonathan|date=2015-08-17|publisher=John Wiley & Sons|url=https://books.google.fr/books?id=OaRjCgAAQBAJ&pg=PA900|isbn=9781118581766|language=en}}
23. ^{{cite journal |pages=1591–4 |doi=10.1126/science.270.5242.1591 |title=The Centromere: Hub of Chromosomal Activities |year=1995 |last1=Pluta |first1=A. F. |last2=MacKay |first2=A. M. |last3=Ainsztein |first3=A. M. |last4=Goldberg |first4=I. G. |last5=Earnshaw |first5=W. C. |journal=Science |volume=270 |issue=5242 |pmid=7502067}}
24. ^{{cite journal |pages=75–94 |doi=10.1007/s00438-010-0553-4 |title=Centromere Identity: a challenge to be faced |year=2010 |last1=Mehta |first1=G. D. |last2=Agarwal |first2=M. |last3=Ghosh |first3=S. K. |journal=Mol. Genet. Genomics |volume=284 |issue=2 |pmid=20585957}}
25. ^{{cite journal |pages=273–82 |doi=10.1139/O08-135 |title=Epigenetic specification of centromeres |year=2009 |last1=Dalal |first1=Yamini |journal=Biochemistry and Cell Biology |volume=87 |pmid=19234541 |issue=1}}
26. ^{{cite journal |pages=3233–41 |doi=10.1016/j.yexcr.2009.07.023 |title=Epigenetic specification of centromeres by CENP-A |year=2009 |last1=Bernad |first1=Rafael |last2=Sánchez |first2=Patricia |last3=Losada |first3=Ana |journal=Experimental Cell Research |volume=315 |issue=19 |pmid=19660450}}
27. ^{{cite journal |pages=85–93 |doi=10.1093/hmg/ddi008 |title=Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere |year=2004 |last1=Chueh |first1=A. C. |journal=Human Molecular Genetics |volume=14 |pmid=15537667 |last2=Wong |first2=LH |last3=Wong |first3=N |last4=Choo |first4=KH |issue=1}}
28. ^{{cite journal |doi=10.1186/1471-2164-10-143 |title=Determination of enriched histone modifications in non-genic portions of the human genome |year=2009 |last1=Rosenfeld |first1=Jeffrey A |last2=Wang |first2=Zhibin |last3=Schones |first3=Dustin E |last4=Zhao |first4=Keji |last5=Desalle |first5=Rob |last6=Zhang |first6=Michael Q |journal=BMC Genomics |volume=10 |pages=143 |pmid=19335899 |pmc=2667539}}
29. ^{{cite journal |pages=1833–7 |doi=10.1126/science.1074973 |title=Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi |year=2002 |last1=Volpe |first1=T. A. |journal=Science |volume=297 |issue=5588 |pmid=12193640 |last2=Kidner |first2=C |last3=Hall |first3=IM |last4=Teng |first4=G |last5=Grewal |first5=SI |last6=Martienssen |first6=RA}}
30. ^{{cite journal |pages=261–82 |doi=10.1016/j.ajhg.2007.11.009 |title=Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution |year=2008 |last1=Marshall |first1=Owen J. |last2=Chueh |first2=Anderly C. |last3=Wong |first3=Lee H. |last4=Choo |first4=K.H. Andy |journal=The American Journal of Human Genetics |volume=82 |issue=2 |pmid=18252209 |pmc=2427194}}
31. ^{{cite journal |pages=617–26 |doi=10.1023/B:CHRO.0000036585.44138.4b |title=Chromosomal dynamics of human neocentromere formation |year=2004 |last1=Warburton |first1=Peter E. |journal=Chromosome Research |volume=12 |issue=6 |pmid=15289667}}
32. ^{{citation | last1 = Thangavelu | first1 = P.U. | last2 = Lin | first2 = C.Y. | last3 = Vaidyanathan | first3 = S. | last4 = Nguyen | first4 = T.H.M. | last5 = Dray | first5 = E. |last6 = Duijf | first6 = P.H.G. | year = 2017 | title = Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer | journal = Oncotarget | volume = 8 | issue = 37 | pages = 62167-62182 | doi = 10.18632/oncotarget.19131 | url = http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=19131&path%5B%5D=61283 | pmid = 28977935| pmc = 5617495 }}
33. ^{{cite journal |doi=10.1038/ncomms12619 |title=Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy |year=2016 |last1=Zhang |first1=W. |last2=Mao |first2=J-H. |last3=Zhu|first3=W.| last4=Jain |first4=A.K.| last5=Liu |first5=L.| last6=Brown |first6=J.B.|last7=Karpen |first7=G.H.|journal=Nature Communications |volume=7 |pmid=27577169 | pmc=5013662 | pages=12619}}
34. ^{{cite journal|last1=Giunta|first1=S|last2=Funabiki|first2=H|title=Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=21 February 2017|volume=114|issue=8|pages=1928–1933|doi=10.1073/pnas.1615133114|pmid=28167779|pmc=5338446}}
35. ^{{MerriamWebsterDictionary|Centromere}}
36. ^{{Dictionary.com|Centromere}}

Further reading

  • {{cite journal |pages=75–94 |doi=10.1007/s00438-010-0553-4 |title=Centromere Identity: a challenge to be faced |year=2010 |last1=Mehta |first1=G. D. |last2=Agarwal |first2=M. |last3=Ghosh |first3=S. K. |journal=Mol. Genet. Genomics |volume=284 |issue=2 |pmid=20585957}}
  • {{cite book |first1=Harvey |last1=Lodish |first2=Arnold |last2=Berk |first3=Chris A. |last3=Kaiser |first4=Monty |last4=Krieger |first5=Matthew P. |last5=Scott |first6=Anthony |last6=Bretscher |first7=Hiddle |last7=Ploegh |first8=Paul |last8=Matsudaira |year=2008 |title=Molecular Cell Biology |edition=6th |publisher=W.H. Freeman |location=New York |isbn=978-0-7167-7601-7}}
  • {{cite journal |pages=138–45 |doi=10.1038/ng1289 |laysummary=https://www.sciencedaily.com/releases/2004/01/040111212949.htm |laysource=Science Daily |laydate=January 13, 2004 |title=Sequencing of a rice centromere uncovers active genes |year=2004 |last1=Nagaki |first1=Kiyotaka |last2=Cheng |first2=Zhukuan |last3=Ouyang |first3=Shu |last4=Talbert |first4=Paul B |last5=Kim |first5=Mary |last6=Jones |first6=Kristine M |last7=Henikoff |first7=Steven |last8=Buell |first8=C Robin |last9=Jiang |first9=Jiming |journal=Nature Genetics |volume=36 |issue=2 |pmid=14716315}}
{{Commons category|Centromere}}{{Chromo}}{{Autoantigens}}

2 : Chromosomes|DNA replication

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/30 2:18:52