请输入您要查询的百科知识:

 

词条 Formation matrix
释义

  1. See also

  2. Notes

  3. References

{{technical|date=May 2014}}

In statistics and information theory, the expected formation matrix of a likelihood function is the matrix inverse of the Fisher information matrix of , while the observed formation matrix of is the inverse of the observed information matrix of .[1]

Currently, no notation for dealing with formation matrices is widely used, but in books and articles by Ole E. Barndorff-Nielsen and Peter McCullagh, the symbol is used to denote the element of the i-th line and j-th column of the observed formation matrix. The geometric interpretation of the Fisher information matrix (metric) leads to a notation of following the notation of the (contravariant) metric tensor in differential geometry. The Fisher information metric is denoted by so that using Einstein notation we have .

These matrices appear naturally in the asymptotic expansion of the distribution of many statistics related to the likelihood ratio.

See also

  • Fisher information
  • Shannon entropy

Notes

1. ^Edwards (1984) p104

References

  • Barndorff-Nielsen, O.E., Cox, D.R. (1989), Asymptotic Techniques for Use in Statistics, Chapman and Hall, London. {{ISBN|0-412-31400-2}}
  • Barndorff-Nielsen, O.E., Cox, D.R., (1994). Inference and Asymptotics. Chapman & Hall, London.
  • P. McCullagh, "Tensor Methods in Statistics", Monographs on Statistics and Applied Probability, Chapman and Hall, 1987.
  • Edwards, A.W.F. (1984) Likelihood. CUP. {{ISBN|0-521-31871-8}}
{{statistics-stub}}

2 : Estimation theory|Information theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 22:43:11