词条 | Genistein |
释义 |
| Watchedfields = changed | verifiedrevid = 443833756 | ImageFile = Genistein.svg | ImageSize = 220px | ImageFile1 = Genistein-3D-balls.png | ImageSize1 = 220 | ImageAlt1 = Genistein molecule | IUPACName = 5,7-Dihydroxy-3-(4-hydroxyphenyl)chromen-4-one | OtherNames = 4',5,7-Trihydroxyisoflavone |Section1={{Chembox Identifiers | IUPHAR_ligand = 2826 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 4444448 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = DH2M523P0H | KEGG_Ref = {{keggcite|correct|kegg}} | KEGG = C06563 | InChI = 1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H | InChIKey = TZBJGXHYKVUXJN-UHFFFAOYAH | ChEMBL_Ref = {{ebicite|correct|EBI}} | ChEMBL = 44 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = TZBJGXHYKVUXJN-UHFFFAOYSA-N | CASNo_Ref = {{cascite|correct|CAS}} | CASNo = 446-72-0 | PubChem = 5280961 | DrugBank_Ref = {{drugbankcite|correct|drugbank}} | DrugBank = DB01645 | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 28088 | SMILES = Oc1ccc(cc1)C\\3=C\\Oc2cc(O)cc(O)c2C/3=O }} |Section2={{Chembox Properties | C=15 | H=10 | O=5 | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = }} |Section3={{Chembox Hazards | MainHazards = | FlashPt = | AutoignitionPt = }} }}Genistein is an isoflavone that is described as an angiogenesis inhibitor and a phytoestrogen. It was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of prunetol. It was chemically synthesized in 1928.[1] Natural occurrencesIsoflavones such as genistein and daidzein are found in a number of plants including lupin, fava beans, soybeans, kudzu, and psoralea being the primary food source,[2][3] also in the medicinal plants, Flemingia vestita[4] and F. macrophylla,[5][6] and coffee.[7] It can also be found in Maackia amurensis cell cultures.[8] Extraction and purificationMost of the isoflavones in plants are present in a glycosylated form. The unglycosylated aglycones can be obtained through various means such as treatment with the enzyme β-glucosidase, acid treatment of soybeans followed by solvent extraction, or by chemical synthesis.[9] Acid treatment is a harsh method as concentrated inorganic acids are used. Both enzyme treatment and chemical synthesis are costly. A more economical process consisting of fermentation for in situ production of β-glucosidase to isolate genistein has been recently investigated.[10] Biological effectsBesides functioning as antioxidant and anthelmintic, many isoflavones have been shown to interact with animal and human estrogen receptors, causing effects in the body similar to those caused by the hormone estrogen. Isoflavones also produce non-hormonal effects. Molecular functionGenistein influences multiple biochemical functions in living cells:
Activation of PPARsIsoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.[19] For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.[20] Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[19][21][22] Tyrosine kinase inhibitorThe main known activity of genistein is tyrosine kinase inhibitor, mostly of epidermal growth factor receptor (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.{{citation needed|date=September 2014}} Redox-active — not only antioxidantGenistein may act as direct antioxidant, similar to many other isoflavones, and thus may alleviate damaging effects of free radicals in tissues.[23][24] The same molecule of genistein, similar to many other isoflavones, by generation of free radicals poison topoisomerase II, an enzyme important for maintaining DNA stability.[25][26][27] Human cells turn on beneficial, detoxyfying Nrf2 factor in response to genistein insult. This pathway may be responsible for observed health maintaining properties of small doses of genistein.[28] AnthelminticThe root-tuber peel extract of the leguminous plant Felmingia vestita is the traditional anthelmintic of the Khasi tribes of India. While investigating its anthelmintic activity, genistein was found to be the major isoflavone responsible for the deworming property.[4][29] Genistein was subsequently demonstrated to be highly effective against intestinal parasites such as the poultry cestode Raillietina echinobothrida,[29] the pork trematode Fasciolopsis buski,[30] and the sheep liver fluke Fasciola hepatica.[31] It exerts its anthelmintic activity by inhibiting the enzymes of glycolysis and glycogenolysis,[32][33] and disturbing the Ca2+ homeostasis and NO activity in the parasites.[34][35] It has also been investigated in human tapeworms such as Echinococcus multilocularis and E. granulosus metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent cestocides.[36] AtherosclerosisGenistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis.[37] Cancer linksGenistein and other isoflavones have been identified as angiogenesis inhibitors, and found to inhibit the uncontrolled cell growth of cancer, most likely by inhibiting the activity of substances in the body that regulate cell division and cell survival (growth factors). Various studies have found that moderate doses of genistein have inhibitory effects on cancers of the prostate,[38][39] cervix,[40] brain,[41] breast[38][42][43] and colon.[16] It has also been shown that genistein makes some cells more sensitive to radio-therapy.;[44] although, timing of phytoestrogen use is also important.[44] Genistein's chief method of activity is as a tyrosine kinase inhibitor. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of DNA topoisomerase II also plays an important role in the cytotoxic activity of genistein.[26][45] The observation that transition of normal lymphocytes from quiescence (G0) to the G1 phase of the cell cycle is particularly sensitive to genistein prompted the authors to suggest that this isoflavone may be potential immunosuppressant.[46] Genistein has been used to selectively target pre B-cells via conjugation with an anti-CD19 antibody.[47] Studies on rodents have found genistein to be useful in the treatment of leukemia, and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.[48] Estrogen receptor — more cancer linksDue to its structure similarity to 17β-estradiol (estrogen), genistein can compete with it and bind to estrogen receptors. However, genistein shows much higher affinity toward estrogen receptor β than toward estrogen receptor α.[49] Data from in vitro and in vivo research confirms that genistein can increase rate of growth of some ER expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.[50][51][52] It was also found to decrease efficiency of tamoxifen and letrozole - drugs commonly used in breast cancer therapy.[53][54] Genistein was found to inhibit immune response towards cancer cells allowing their survival.[55] Effects in malesIsoflavones can act like estrogen, stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce apoptosis of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;[56] however, a recent study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.[57] Carcinogenic and toxic potentialGenistein was, among other flavonoids, found to be a strong topoisomerase inhibitor, similarly to some chemotherapeutic anticancer drugs ex. etoposide and doxorubicin.[25][58] In high doses it was found to be strongly toxic to normal cells.[67] This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.[27][59] It was found to deteriorate DNA of cultured blood stem cells, which may lead to leukemia.[60] Genistein among other flavonoids is suspected to increase risk of infant leukemia when consumed during pregnancy.[61][62] Sanfilippo syndrome treatmentGenistein decreases pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. In vitro animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.[63] Genistein was found to also possess toxic properties toward brain cells.[64] Among many pathways stimulated by genistein, autophagy may explain the observed efficiency of the substance as autophagy is significantly impaired in the disease.[65][66] Related compounds
See also
References1. ^{{cite journal |last1=Walter |first1=E. D.|title=Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans |journal=Journal of the American Chemical Society |volume=63 |issue=12 |pages=3273–76 |year=1941 |doi=10.1021/ja01857a013}} 2. ^{{cite journal |last1=Coward |first1=Lori |last2=Barnes |first2=Neil C. |last3=Setchell |first3=Kenneth D. R. |last4=Barnes |first4=Stephen |year=1993 |title=Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets |journal=Journal of Agricultural and Food Chemistry|volume=41 |issue=11 |pages=1961–7 |doi=10.1021/jf00035a027}} 3. ^{{cite journal |last1=Kaufman |first1=Peter B. |last2=Duke |first2=James A. |last3=Brielmann |first3=Harry |last4=Boik |first4=John |last5=Hoyt |first5=James E. |year=1997 |title=A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health |journal=The Journal of Alternative and Complementary Medicine |volume=3 |issue=1 |pages=7–12 |pmid=9395689 |doi=10.1089/acm.1997.3.7|citeseerx=10.1.1.320.9747 }} 4. ^1 {{cite journal |last1=Rao |first1=H. S. P. |last2=Reddy |first2=K. S. |year=1991 |title=Isoflavones from Flemingia vestita |journal=Fitoterapia |volume=62 |issue=5 |pages=458}} 5. ^{{cite journal |last1=Rao |first1=K.Nageswara |last2=Srimannarayana |first2=G. |year=1983 |title=Fleminone, a flavanone from the stems of Flemingia macrophylla |journal=Phytochemistry |volume=22 |issue=10 |pages=2287–90 |doi=10.1016/S0031-9422(00)80163-6}} 6. ^{{cite journal |last1=Wang |first1=Bor-Sen |last2=Juang |first2=Lih-Jeng |last3=Yang |first3=Jeng-Jer |last4=Chen |first4=Li-Ying |last5=Tai |first5=Huo-Mu |last6=Huang |first6=Ming-Hsing |year=2012 |title=Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots |journal=Evidence-Based Complementary and Alternative Medicine |volume=2012 |pages=1–7 |doi=10.1155/2012/431081 |pmid=22997529 |pmc=3444970}} 7. ^{{cite journal |last1=Alves |first1=Rita C. |last2=Almeida |first2=Ivone M. C. |last3=Casal |first3=Susana |last4=Oliveira |first4=M. Beatriz P. P. |year=2010 |title=Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method |journal=Journal of Agricultural and Food Chemistry |volume=58 |issue=5 |pages=3002–7 |pmid=20131840 |doi=10.1021/jf9039205}} 8. ^{{cite journal |last1=Fedoreyev |first1=S.A |last2=Pokushalova |first2=T.V |last3=Veselova |first3=M.V |last4=Glebko |first4=L.I |last5=Kulesh |first5=N.I |last6=Muzarok |first6=T.I |last7=Seletskaya |first7=L.D |last8=Bulgakov |first8=V.P |last9=Zhuravlev |first9=Yu.N |year=2000 |title=Isoflavonoid production by callus cultures of Maackia amurensis |journal=Fitoterapia |volume=71 |issue=4 |pages=365–72 |pmid=10925005 |doi=10.1016/S0367-326X(00)00129-5}} 9. ^{{cite journal |last1=Prakash |first1=Om |last2=Saini |first2=Neena |last3=Tanwar |first3=Madan P. |last4=Moriarty |first4=Robert M. |year=1995 |title=Hypervalent iodine in organic synthesis: α-functionalization of carbonyl compounds |journal= Contemporary Organic Synthesis|volume= 2|issue= 2 |pages=121–31 |doi=10.1039/CO9950200121}} 10. ^{{cite journal |last1=Patravale |first1=VB |last2=Pandit |first2=NT |year=2011 |title=Design and optimization of a novel method for extraction of genistein |journal=Indian Journal of Pharmaceutical Sciences |volume=73 |issue=2 |pages=184–92 |pmid=22303062 |doi=10.4103/0250-474x.91583 |pmc=3267303}} 11. ^{{cite journal|last1=Patisaul|first1=Heather B.|last2=Melby|first2=Melissa|last3=Whitten|first3=Patricia L.|last4=Young|first4=Larry J.|title=Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus|journal=Endocrinology|volume=143|issue=6|year=2002|pages=2189–2197|issn=0013-7227|doi=10.1210/endo.143.6.8843|pmid=12021182}} 12. ^{{Citation | last = Green | first = Sarah E | title = In Vitro Comparison of Estrogenic Activities of Popular Women's Health Botanicals | year = 2015 | url = https://indigo.uic.edu/handle/10027/19647}} 13. ^{{cite journal|last1=Prossnitz|first1=Eric R.|last2=Barton|first2=Matthias|title=Estrogen biology: New insights into GPER function and clinical opportunities|journal=Molecular and Cellular Endocrinology|volume=389|issue=1–2|year=2014|pages=71–83|issn=0303-7207|doi=10.1016/j.mce.2014.02.002|pmid=24530924|pmc=4040308}} 14. ^{{cite journal |last1=Gossner |first1=G |last2=Choi |first2=M |last3=Tan |first3=L |last4=Fogoros |first4=S |last5=Griffith |first5=K |last6=Kuenker |first6=M |last7=Liu |first7=J |year=2007 |title=Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells |journal=Gynecologic Oncology |volume=105 |issue=1 |pages=23–30 |pmid=17234261 |doi=10.1016/j.ygyno.2006.11.009}} 15. ^{{cite journal |last1=Singletary |first1=K. |last2=Milner |first2=J. |year=2008 |title=Diet, Autophagy, and Cancer: A Review |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=17 |issue=7 |pages=1596–610 |pmid=18628411 |doi=10.1158/1055-9965.EPI-07-2917}} 16. ^1 {{cite journal |last1=Nakamura |first1=Yoshitaka |last2=Yogosawa |first2=Shingo |last3=Izutani |first3=Yasuyuki |last4=Watanabe |first4=Hirotsuna |last5=Otsuji |first5=Eigo |last6=Sakai |first6=Tosiyuki |year=2009 |title=A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy |journal=Molecular Cancer |volume=8 |pages=100 |pmc=2784428 |pmid=19909554 |doi=10.1186/1476-4598-8-100}} 17. ^{{cite journal |last1=Fang |first1=Mingzhu |last2=Chen |first2=Dapeng |last3=Yang |first3=Chung S. |date=January 2007 |title=Dietary polyphenols may affect DNA methylation |journal=The Journal of Nutrition |volume=137 |issue=1 Suppl |pages=223S–228S |pmid=17182830 |url=http://jn.nutrition.org/cgi/pmidlookup?view=long&pmid=17182830|doi=10.1093/jn/137.1.223S }} 18. ^{{Cite journal|last=Glushakov|first=A. V.|last2=Glushakova|first2=H. Y.|last3=Skok|first3=V. I.|date=1999-01-15|title=Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers|journal=Journal of the Autonomic Nervous System|volume=75|issue=1|pages=16–22|issn=0165-1838|pmid=9935265|doi=10.1016/S0165-1838(98)00165-9}} 19. ^1 {{cite journal |last1=Wang |first1=Limei |last2=Waltenberger |first2=Birgit |last3=Pferschy-Wenzig |first3=Eva-Maria |last4=Blunder |first4=Martina |last5=Liu |first5=Xin |last6=Malainer |first6=Clemens |last7=Blazevic |first7=Tina |last8=Schwaiger |first8=Stefan |last9=Rollinger |first9=Judith M. |last10=Heiss |first10=Elke H. |last11=Schuster |first11=Daniela |last12=Kopp |first12=Brigitte |last13=Bauer |first13=Rudolf |last14=Stuppner |first14=Hermann |last15=Dirsch |first15=Verena M. |last16=Atanasov |first16=Atanas G. |year=2014 |title=Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review |journal=Biochemical Pharmacology |pmid=25083916 |doi=10.1016/j.bcp.2014.07.018 |pmc=4212005 |volume=92 |issue=1 |pages=73–89}} 20. ^{{cite journal |last1=Dang |first1=Zhi-Chao |last2=Audinot |first2=Valérie |last3=Papapoulos |first3=Socrates E. |last4=Boutin |first4=Jean A. |last5=Löwik |first5=Clemens W. G. M. |year=2002 |title=Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein |journal=Journal of Biological Chemistry |volume=278 |issue=2 |pages=962–7 |pmid=12421816 |doi=10.1074/jbc.M209483200}} 21. ^{{cite journal |last1=Dang |first1=Zhi Chao |last2=Lowik |first2=Clemens |year=2005 |title=Dose-dependent effects of phytoestrogens on bone |journal=Trends in Endocrinology and Metabolism |volume=16 |issue=5 |pages=207–13 |pmid=15922618 |doi=10.1016/j.tem.2005.05.001}} 22. ^{{cite journal |last1=Dang |first1=Z. C. |year=2009 |title=Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action |journal=Obesity Reviews |volume=10 |issue=3 |pages=342–9 |pmid=19207876 |doi=10.1111/j.1467-789X.2008.00554.x}} 23. ^{{cite journal |last1=Han |first1=Rui-Min |last2=Tian |first2=Yu-Xi |last3=Liu |first3=Yin |last4=Chen |first4=Chang-Hui |last5=Ai |first5=Xi-Cheng |last6=Zhang |first6=Jian-Ping |last7=Skibsted |first7=Leif H. |year=2009 |title=Comparison of Flavonoids and Isoflavonoids as Antioxidants |journal=Journal of Agricultural and Food Chemistry |volume=57 |issue=9 |pages=3780–5 |pmid=19296660 |doi=10.1021/jf803850p}} 24. ^{{cite journal |last1=Borrás |first1=Consuelo |last2=Gambini |first2=Juan |last3=López-Grueso |first3=Raúl |last4=Pallardó |first4=Federico V. |last5=Viña |first5=Jose |year=2010 |title=Direct antioxidant and protective effect of estradiol on isolated mitochondria |journal=Biochimica et Biophysica Acta |volume=1802|issue=1 |pages=205–11 |pmid=19751829 |doi=10.1016/j.bbadis.2009.09.007}} 25. ^1 {{cite journal |last1=Bandele |first1=Omari J. |last2=Osheroff |first2=Neil |year=2007 |title=Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ |journal=Biochemistry |volume=46 |issue=20 |pages=6097–108 |pmid=17458941 |doi=10.1021/bi7000664 |pmc=2893030}} 26. ^1 {{cite journal |last1=Markovits |first1=Judith |last2=Linassier |first2=Claude |last3=Fossé |first3=Philippe |last4=Couprie |first4=Jeanine |last5=Pierre |first5=Josiane |last6=Jacquemin-Sablon |first6=Alain |last7=Saucier |first7=Jean-Marie |last8=Le Pecq |first8=Jean-Bernard |last9=Larsen |first9=Annette K. |date=September 1989 |title=Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II |journal=Cancer Research |volume=49 |issue=18 |pages=5111–7 |pmid=2548712 |url=http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=2548712}} 27. ^1 {{cite journal |last1=López-Lázaro |first1=Miguel |last2=Willmore |first2=Elaine |last3=Austin |first3=Caroline A. |year=2007 |title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein |journal=Journal of Natural Products |volume=70 |issue=5 |pages=763–7 |pmid=17411092 |doi=10.1021/np060609z}} 28. ^{{cite journal |last1=Mann |first1=Giovanni E |last2=Bonacasa |first2=Barbara |last3=Ishii |first3=Tetsuro |last4=Siow |first4=Richard CM |year=2009|title=Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones |journal=Current Opinion in Pharmacology |volume=9 |issue=2 |pages=139–45 |pmid=19157984 |doi=10.1016/j.coph.2008.12.012}} 29. ^1 {{cite journal |last1=Tandon |first1=V. |last2=Pal |first2=P. |last3=Roy |first3=B. |last4=Rao |first4=H. S. P. |last5=Reddy |first5=K. S. |year=1997 |title=In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India |journal=Parasitology Research |volume=83 |issue=5 |pages=492–8 |pmid=9197399 |doi=10.1007/s004360050286}} 30. ^{{cite journal |last1=Kar |first1=Pradip K |last2=Tandon |first2=Veena |last3=Saha |first3=Nirmalendu |year=2002 |title=Anthelmintic efficacy of Flemingia vestita: Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski |journal=Parasitology International |volume=51 |issue=3 |pages=249–57 |pmid=12243779 |doi=10.1016/S1383-5769(02)00032-6}} 31. ^{{cite journal |last1=Toner |first1=E. |last2=Brennan |first2=G. P. |last3=Wells |first3=K. |last4=McGeown |first4=J. G. |last5=Fairweather |first5=I. |year=2008 |title=Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica |journal=Parasitology |volume=135|issue=10 |pages=1189–203 |pmid=18771609 |doi=10.1017/S0031182008004630}} 32. ^{{cite journal |last1=Tandon |first1=Veena |last2=Das |first2=Bidyadhar |last3=Saha |first3=Nirmalendu |year=2003 |title=Anthelmintic efficacy of Flemingia vestita (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida |journal=Parasitology International |volume=52 |issue=2 |pages=179–86 |pmid=12798931 |doi=10.1016/S1383-5769(03)00006-0}} 33. ^{{cite journal |last1=Das |first1=B. |last2=Tandon |first2=V. |last3=Saha |first3=N. |year=2004 |title=Anthelmintic efficacy of Flemingia vestita (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida |journal=Parasitology Research |volume=93 |issue=4 |pages=253–61 |pmid=15138892 |doi=10.1007/s00436-004-1122-8}} 34. ^{{cite journal |doi=10.1016/j.parint.2005.08.002|pmid=16198617|title=Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl|journal=Parasitology International|volume=55|issue=1|pages=17–21|year=2006|last1=Das|first1=Bidyadhar|last2=Tandon|first2=Veena|last3=Saha|first3=Nirmalendu}} 35. ^{{cite journal |last1=Das |first1=Bidyadhar |last2=Tandon |first2=Veena |last3=Lyndem |first3=Larisha M. |last4=Gray |first4=Alexander I. |last5=Ferro |first5=Valerie A. |year=2009 |title=Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida |journal=Comparative Biochemistry and Physiology C |volume=149 |issue=3 |pages=397–403 |pmid=18854226 |doi=10.1016/j.cbpc.2008.09.012}} 36. ^{{cite journal |last1=Naguleswaran |first1=Arunasalam |last2=Spicher |first2=Martin |last3=Vonlaufen |first3=Nathalie |last4=Ortega-Mora|first4=Luis M. |last5=Torgerson|first5=Paul |last6=Gottstein |first6=Bruno |last7=Hemphill |first7=Andrew |year=2006 |title=In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis and Echinococcus granulosus |journal=Antimicrobial Agents and Chemotherapy |volume=50 |issue=11 |pages=3770–8 |pmid=16954323 |doi=10.1128/AAC.00578-06 |pmc=1635224}} 37. ^{{cite journal |last1=Si |first1=Hongwei |last2=Liu |first2=Dongmin |last3=Si |first3=Hongwei |last4=Liu |first4=Dongmin |year=2007 |title=Phytochemical Genistein in the Regulation of Vascular Function: New Insights |journal=Current Medicinal Chemistry |volume=14 |issue=24 |pages=2581–9 |pmid=17979711 |doi=10.2174/092986707782023325}} 38. ^1 {{cite journal |last1=Morito |first1=Keiko |last2=Hirose |first2=Toshiharu |last3=Kinjo |first3=Junei |last4=Hirakawa |first4=Tomoki |last5=Okawa |first5=Masafumi |last6=Nohara |first6=Toshihiro |last7=Ogawa |first7=Sumito |last8=Inoue |first8=Satoshi |last9=Muramatsu |first9=Masami |last10=Masamune |first10=Yukito |year=2001 |title=Interaction of Phytoestrogens with Estrogen Receptors α and β |journal=Biological & Pharmaceutical Bulletin |volume=24 |issue=4 |pages=351–6 |pmid=11305594 |doi=10.1248/bpb.24.351}} 39. ^{{cite journal |last1=Hwang |first1=Ye Won |last2=Kim |first2=Soo Young |last3=Jee |first3=Sun Ha |last4=Kim |first4=Youn Nam |last5=Nam |first5=Chung Mo |year=2009 |title=Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies |journal=Nutrition and Cancer |volume=61 |issue=5 |pages=598–606 |pmid=19838933 |doi=10.1080/01635580902825639}} 40. ^{{cite journal |last1=Kim |first1=Su-Hyeon |last2=Kim |first2=Su-Hyeong |last3=Kim |first3=Yong-Beom |last4=Jeon |first4=Yong-Tark |last5=Lee |first5=Sang-Chul |last6=Song |first6=Yong-Sang |year=2009 |title=Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells |journal=Annals of the New York Academy of Sciences |volume=1171 |issue=1 |pages=495–500 |pmid=19723095 |bibcode=2009NYASA1171..495K |doi=10.1111/j.1749-6632.2009.04899.x}} 41. ^{{cite journal |last1=Das |first1=Arabinda |last2=Banik |first2=Naren L. |last3=Ray |first3=Swapan K. |year=2009 |title=Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes |journal=Cancer |volume=116 |issue=1 |pages=164–76 |pmid=19894226 |pmc=3159962 |doi=10.1002/cncr.24699}} 42. ^{{cite journal |last1=Sakamoto |first1=Takako |last2=Horiguchi |first2=Hyogo |last3=Oguma |first3=Etsuko |last4=Kayama |first4=Fujio |year=2010 |title=Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells |journal=The Journal of Nutritional Biochemistry |volume=21 |issue=9 |pages=856–64 |pmid=19800779 |doi=10.1016/j.jnutbio.2009.06.010}} 43. ^{{cite journal |last1=de Lemos |first1=Mário L |year=2001 |title=Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth |journal=The Annals of Pharmacotherapy |volume=35 |issue=9 |pages=1118–21 |pmid=11573864 |doi=10.1345/aph.10257}} 44. ^1 {{cite journal |last1=de Assis |first1=Sonia |last2=Hilakivi-Clarke |first2=Leena |year=2006 |title=Timing of Dietary Estrogenic Exposures and Breast Cancer Risk |journal=Annals of the New York Academy of Sciences |volume=1089 |issue=1 |pages=14–35 |pmid=17261753 |bibcode=2006NYASA1089...14D |doi=10.1196/annals.1386.039}} 45. ^{{cite journal |doi=10.1021/np060609z|pmid=17411092|title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein|journal=Journal of Natural Products|volume=70|issue=5|pages=763–7|year=2007|last1=López-Lázaro|first1=Miguel|last2=Willmore|first2=Elaine|last3=Austin|first3=Caroline A.}} 46. ^Traganos F, Ardelt B, Halko N, Bruno S, Darzynkiewicz Z. (1992) Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells. Cancer Res. Nov 15;52(22):6200-8. {{PMID|1330289}}. 47. ^{{cite book |last1=Safa |first1=Malek |last2=Foon |first2=Kenneth A. |last3=Oldham |first3=Robert K. |chapter=Drug Immunoconjugates |chapterurl=https://books.google.com/books?id=emGC_fRJH_IC&pg=PA450 |editor1-first=Robert K. |editor1-last=Oldham |editor2-first=Robert O. |editor2-last=Dillman |title=Principles of Cancer Biotherapy |edition=5th |pages=451–62 |year=2009 |doi=10.1007/978-90-481-2289-9_12 |isbn=978-90-481-2277-6}} 48. ^{{cite journal |last1=Raynal |first1=Noël J. M. |last2=Charbonneau |first2=Michel |last3=Momparler |first3=Louise F. |last4=Momparler |first4=Richard L. |year=2008 |title=Synergistic Effect of 5-Aza-2′-Deoxycytidine and Genistein in Combination Against Leukemia |journal=Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics |volume=17 |issue=5 |pages=223–30 |pmid=18980019 |doi=10.3727/096504008786111356}} 49. ^{{cite journal |last1=Kuiper |first1=George G. J. M. |last2=Lemmen |first2=Josephine G. |last3=Carlsson |first3=Bo |last4=Corton |first4=J. Christopher |last5=Safe |first5=Stephen H. |last6=van der Saag |first6=Paul T. |last7=van der Burg |first7=Bart |last8=Gustafsson |first8=Jan-Åke |year=1998 |title=Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β |journal=Endocrinology |volume=139 |issue=10 |pages=4252–63 |pmid=9751507 |doi=10.1210/endo.139.10.6216}} 50. ^{{cite journal |last1=Ju |first1=Young H. |last2=Allred |first2=Kimberly F. |last3=Allred |first3=Clinton D. |last4=Helferich |first4=William G. |year=2006 |title=Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations |journal=Carcinogenesis |volume=27 |issue=6 |pages=1292–9 |pmid=16537557 |doi=10.1093/carcin/bgi370}} 51. ^{{cite journal |last1=Chen |first1=Wen-Fang |last2=Wong |first2=Man-Sau |year=2004 |title=Genistein Enhances Insulin-Like Growth Factor Signaling Pathway in Human Breast Cancer (MCF-7) Cells |journal=The Journal of Clinical Endocrinology & Metabolism |volume=89 |issue=5 |pages=2351–9 |pmid=15126563 |doi=10.1210/jc.2003-032065}} 52. ^{{cite journal |last1=Yang |first1=Xiaohe |last2=Yang |first2=Shihe |last3=McKimmey |first3=Christine |last4=Liu |first4=Bolin |last5=Edgerton |first5=Susan M. |last6=Bales |first6=Wesley |last7=Archer |first7=Linda T. |last8=Thor |first8=Ann D. |year=2010 |title=Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation |journal=Carcinogenesis |volume=31 |issue=4|pages=695–702 |pmid=20067990 |doi=10.1093/carcin/bgq007}} 53. ^{{cite journal |last1=Helferich |first1=W. G. |last2=Andrade |first2=J. E. |last3=Hoagland |first3=M. S. |year=2008 |title=Phytoestrogens and breast cancer: A complex story |journal=Inflammopharmacology |volume=16 |issue=5 |pages=219–26 |pmid=18815740 |doi=10.1007/s10787-008-8020-0}} 54. ^{{cite journal |last1=Tonetti |first1=Debra A. |last2=Zhang |first2=Yiyun |last3=Zhao |first3=Huiping |last4=Lim |first4=Sok-Bee |last5=Constantinou |first5=Andreas I. |year=2007|title=The Effect of the Phytoestrogens Genistein, Daidzein, and Equol on the Growth of Tamoxifen-Resistant T47D/PKCα |journal=Nutrition and Cancer |volume=58 |issue=2 |pages=222–9 |pmid=17640169 |doi=10.1080/01635580701328545}} 55. ^{{cite journal |last1=Jiang |first1=Xinguo |last2=Patterson |first2=Nicole M. |last3=Ling |first3=Yan |last4=Xie |first4=Jianwei |last5=Helferich |first5=William G. |last6=Shapiro |first6=David J. |title=Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells |journal=Endocrinology |volume=149 |issue=11 |pages=5366–73 |pmid=18669594 |year=2008 |doi=10.1210/en.2008-0857 |pmc=2584580}} 56. ^{{cite journal |last1=Kumi-Diaka |first1=James |last2=Rodriguez |first2=Rosanna |last3=Goudaze |first3=Gould |year=1998 |title=Influence of genistein (4′,5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines |journal=Biology of the Cell |volume=90 |issue=4 |pages=349–54 |pmid=9800352 |doi=10.1016/S0248-4900(98)80015-4}} 57. ^{{cite journal |last1=Mitchell |first1=Julie H. |last2=Cawood |first2=Elizabeth |last3=Kinniburgh |first3=David |last4=Provan |first4=Anne |last5=Collins |first5=Andrew R. |last6=Irvine |first6=D. Stewart |year=2001 |title=Effect of a phytoestrogen food supplement on reproductive health in normal males|journal=Clinical Science |volume=100 |issue=6 |pages=613–8 |pmid=11352776 |doi=10.1042/CS20000212}} 58. ^{{cite journal |last1=Lutz |first1=Werner K. |last2=Tiedge |first2=Oliver |last3=Lutz |first3=Roman W. |last4=Stopper |first4=Helga |year=2005 |title=Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS, MNU, and Genistein |journal=Toxicological Sciences |volume=86 |issue=2 |pages=318–23 |pmid=15901918 |doi=10.1093/toxsci/kfi200}} 59. ^{{cite journal |last1=Schmidt |first1=Friederike |last2=Knobbe |first2=Christiane |last3=Frank |first3=Brigitte |last4=Wolburg |first4=Hartwig |last5=Weller |first5=Michael |year=2008 |title=The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines |journal=Oncology Reports |volume=19 |issue=4 |pages=1061–6 |pmid=18357397 |doi=10.3892/or.19.4.1061}} 60. ^{{cite journal |last1=van Waalwijk van Doorn-Khosrovani |first1=Sahar Barjesteh |last2=Janssen |first2=Jannie |last3=Maas |first3=Lou M. |last4=Godschalk |first4=Roger W. L. |last5=Nijhuis |first5=Jan G. |last6=van Schooten |first6=Frederik J. |year=2007 |title=Dietary flavonoids induce MLL translocations in primary human CD34+ cells |journal=Carcinogenesis |volume=28 |issue=8 |pages=1703–9 |pmid=17468513 |doi=10.1093/carcin/bgm102}} 61. ^{{cite journal |last1=Spector |first1=Logan G. |last2=Xie |first2=Yang |last3=Robison |first3=Leslie L. |last4=Heerema |first4=Nyla A. |last5=Hilden |first5=Joanne M. |last6=Lange |first6=Beverly |last7=Felix |first7=Carolyn A. |last8=Davies |first8=Stella M. |last9=Slavin |first9=Joanne |last10=Potter |first10=John D. |last11=Blair |first11=Cindy K. |last12=Reaman |first12=Gregory H. |last13=Ross |first13=Julie A. |year=2005 |title=Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children's Oncology Group |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=14 |issue=3 |pages=651–5 |pmid=15767345 |doi=10.1158/1055-9965.EPI-04-0602}} 62. ^{{cite journal |last1=Azarova |first1=Anna M. |last2=Lin |first2=Ren-Kuo |last3=Tsai |first3=Yuan-Chin |last4=Liu |first4=Leroy F. |last5=Lin |first5=Chao-Po |last6=Lyu |first6=Yi Lisa |year=2010 |title=Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia |journal=Biochemical and Biophysical Research Communications |volume=399 |issue=1 |pages=66–71 |pmid=20638367 |pmc=3376163 |doi=10.1016/j.bbrc.2010.07.043}} 63. ^{{cite journal |last1=Piotrowska |first1=Ewa |last2=Jakóbkiewicz-Banecka |first2=Joanna |last3=Barańska |first3=Sylwia |last4=Tylki-Szymańska |first4=Anna |last5=Czartoryska |first5=Barbara |last6=Węgrzyn |first6=Alicja |last7=Węgrzyn |first7=Grzegorz |year=2006 |title=Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses |journal=European Journal of Human Genetics |volume=14 |issue=7 |pages=846–52 |pmid=16670689 |doi=10.1038/sj.ejhg.5201623}} 64. ^1 {{cite journal |last1=Jin |first1=Ying |last2=Wu |first2=Heng |last3=Cohen |first3=Eric M. |last4=Wei |first4=Jianning |last5=Jin |first5=Hong |last6=Prentice |first6=Howard |last7=Wu |first7=Jang-Yen |year=2007 |title=Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures |journal=Journal of Biomedical Science |volume=14 |issue=2 |pages=275–84 |pmid=17245525 |doi=10.1007/s11373-006-9142-2}} 65. ^{{cite journal |last1=Ballabio |first1=A. |year=2009 |title=Disease pathogenesis explained by basic science: Lysosomal storage diseases as autophagocytic disorders |journal=International Journal of Clinical Pharmacology and Therapeutics |volume=47 |issue=Suppl 1 |pages=S34–8 |pmid=20040309 |doi=10.5414/cpp47034}} 66. ^{{cite journal |last1=Settembre |first1=Carmine |last2=Fraldi |first2=Alessandro |last3=Jahreiss |first3=Luca |last4=Spampanato |first4=Carmine |last5=Venturi |first5=Consuelo |last6=Medina |first6=Diego |last7=de Pablo |first7=Raquel |last8=Tacchetti |first8=Carlo |last9=Rubinsztein |first9=David C. |last10=Ballabio |first10=Andrea |year=2007 |title=A block of autophagy in lysosomal storage disorders |journal=Human Molecular Genetics |volume=17 |issue=1 |pages=119–29 |pmid=17913701 |doi=10.1093/hmg/ddm289}} 67. ^{{cite journal |last1=Xu |first1=Li |last2=Farmer |first2=Rebecca |last3=Huang |first3=Xiaoke |last4=Pavese |first4=Janet |last5=Voll |first5=Eric |last6=Irene |first6=Ogden |last7=Biddle |first7=Margaret |last8=Nibbs |first8=Antoinette |last9=Valsecchi |first9=Matias |last10=Scheidt |first10=Karl |last11=Bergan |first11=Raymond |year=2010 |title=Abstract B58: Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype |journal=Cancer Prevention Research |volume=3 |issue=12 Supplement |pages=B58 |doi=10.1158/1940-6207.PREV-10-B58}} 68. ^{{cite press release |title=New Drug Stops Spread of Prostate Cancer |publisher=Northwestern University |date=April 3, 2012 |url=http://www.northwestern.edu/newscenter/stories/2012/04/prostate-cancer-new-drug.html |accessdate=September 27, 2014}} 69. ^{{cite journal |last1=Chen |first1=Chun-Lin |last2=Levine |first2=Alexandra |last3=Rao |first3=Asha |last4=O'Neill |first4=Karen |last5=Messinger |first5=Yoav |last6=Myers |first6=Dorothea E. |last7=Goldman |first7=Frederick |last8=Hurvitz |first8=Carole |last9=Casper |first9=James T. |last10=Uckun |first10=Fatih M. |year=1999 |title=Clinical Pharmacokinetics of the CD19 Receptor-Directed Tyrosine Kinase Inhibitor B43-Genistein in Patients with B-Lineage Lymphoid Malignancies |journal=The Journal of Clinical Pharmacology |volume=39 |issue=12 |pages=1248–55 |pmid=10586390 |doi=10.1177/00912709922012051}} External links{{Commonscat}}
| title = Pharmacodynamics | titlestyle = background:#ccccff | list1 ={{Cannabinoid receptor modulators}}{{Estrogen receptor modulators}}{{Glycine receptor modulators}}{{Monoamine metabolism modulators}}{{PPAR modulators}}{{Thyroid hormone receptor modulators}} }} 11 : 3α-Hydroxysteroid dehydrogenase inhibitors|21-Hydroxylase inhibitors|Dietary supplements|Nutrients|Isoflavones|Flavonoid antioxidants|Protein kinase inhibitors|Phytoestrogens|Glycine receptor antagonists|Selective ERβ agonists|Steroid sulfotransferase inhibitors |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。