请输入您要查询的百科知识:

 

词条 Chloroquine
释义

  1. Medical uses

     Malaria  Amebiasis  Rheumatic disease 

  2. Adverse effects

     Pregnancy   Elderly  

  3. Drug interactions

  4. Overdose

  5. Resistance in malaria

  6. Pharmacology

  7. Mechanism of action

     Antimalarial  Other 

  8. Names

  9. History

     Research 

  10. See also

  11. References

  12. External links

{{Drugbox
| Watchedfields = changed
| verifiedrevid = 459442331
| IUPAC_name = (RS)-N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine
| image = Chloroquine.svg
| pronounce = {{IPAc-en|ˈ|k|l|ɔː|r|ə|k|w|ɪ|n}}
| tradename = Aralen, others
| Drugs.com = {{drugs.com|monograph|aralen-phosphate}}
| licence_US = Chloroquine
| legal_US = Rx-only
| metabolism = Liver
| elimination_half-life = 1–2 months
| IUPHAR_ligand = 5535
| CAS_number_Ref = {{cascite|correct|??}}
| CAS_number = 54-05-7
| ATC_prefix = P01
| ATC_suffix = BA01
| PubChem = 2719
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB00608
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 2618
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 886U3H6UFF
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D02366
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 3638
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 76
| NIAID_ChemDB = 000733
| C=18 | H=26 | Cl=1 | N=3
| molecular_weight = 319.872 g/mol
| smiles = Clc1cc2nccc(c2cc1)NC(C)CCCN(CC)CC
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C18H26ClN3/c1-4-22(5-2)12-6-7-14(3)21-17-10-11-20-18-13-15(19)8-9-16(17)18/h8-11,13-14H,4-7,12H2,1-3H3,(H,20,21)
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = WHTVZRBIWZFKQO-UHFFFAOYSA-N
}}Chloroquine is a medication used to prevent and to treat malaria in areas where malaria is known to be sensitive to its effects.[1] Certain types of malaria, resistant strains, and complicated cases typically require different or additional medication.[1] It is also occasionally used for amebiasis that is occurring outside the intestines, rheumatoid arthritis, and lupus erythematosus.[1] It is taken by mouth.[1]

Common side effects include muscle problems, loss of appetite, diarrhea, and skin rash.[1] Serious side effects include problems with vision, muscle damage, seizures, and low blood cell levels.[1] It appears to be safe for use during pregnancy but has not been well studied in this group of people.[1] Chloroquine is a member of the drug class 4-aminoquinoline.[1] It works against the asexual form of malaria inside the red blood cell.[1]

Chloroquine was discovered in 1934 by Hans Andersag.[2][3] It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system.[4] It is available as a generic medication.[1] The wholesale cost in the developing world is about {{US$}}0.04.[5] In the United States it costs about {{US$}}5.30 per dose.[1]

Medical uses

Malaria

Chloroquine has long been used in the treatment or prevention of malaria from Plasmodium vivax, P. ovale, and P. malariae, excluding the malaria parasite Plasmodium falciparum, for it started to develop widespread resistance to it.[6][7]

Chloroquine has been extensively used in mass drug administrations, which may have contributed to the emergence and spread of resistance. It is recommended to check if chloroquine is still effective in the region prior to using it.[8] In areas where resistance is present, other antimalarials, such as mefloquine or atovaquone, may be used instead. The Centers for Disease Control and Prevention recommend against treatment of malaria with chloroquine alone due to more effective combinations.[9]

Amebiasis

In treatment of amoebic liver abscess, chloroquine may be used instead of or in addition to other medications in the event of failure of improvement with metronidazole or another nitroimidazole within 5 days or intolerance to metronidazole or a nitroimidazole.[10]

Rheumatic disease

As it mildly suppresses the immune system, it is used in some autoimmune disorders, such as rheumatoid arthritis and lupus erythematosus.[1]

Adverse effects

Side effects include neuromuscular, hearing, gastrointestinal, brain, skin, eye, cardiovascular (rare), and blood reactions.[11]
  • Seizures[11]
  • Deafness or tinnitus.[11]
  • Nausea, vomiting, diarrhea, abdominal cramps, and anorexia.[11]
  • Mild and transient headache.[11]
  • Skin itchiness, skin color changes, hair loss, and skin rashes.[11]
    • Chloroquine-induced itching is very common among black Africans (70%), but much less common in other races. It increases with age, and is so severe as to stop compliance with drug therapy. It is increased during malaria fever; its severity is correlated to the malaria parasite load in blood. Some evidence indicates it has a genetic basis and is related to chloroquine action with opiate receptors centrally or peripherally.[12]
  • Unpleasant metallic taste
    • This could be avoided by ‘taste-masked and controlled release’ formulations such as multiple emulsions.[13]
  • Chloroquine retinopathy
    • May be irreversible.[11] This occurs with long-term use over many years or with high doses. Patients on long-term chloroquine therapy should be screened at baseline and then annually after five years of use.[14] The daily safe maximum doses for eye toxicity can be computed from one's height and weight using this calculator.[15] Patients should be screened for vision changes such as blurring of vision, difficulty focusing, or seeing half an object.[11]
  • Hypotension and electrocardiographic changes[11][16]
    • This manifests itself as either conduction disturbances (bundle-branch block, atrioventricular block) or cardiomyopathy – often with hypertrophy, restrictive physiology, and congestive heart failure. The changes may be irreversible. Only two cases have been reported requiring heart transplantation, suggesting this particular risk is very low. Electron microscopy of cardiac biopsies show pathognomonic cytoplasmic inclusion bodies.
  • Pancytopenia, aplastic anemia, reversible agranulocytosis, low blood platlets, neutropenia.[17]

Pregnancy

Chloroquine has not been shown to have any harmful effects on the fetus when used for malarial prophylaxis.[18] Small amounts of chloroquine are excreted in the breast milk of lactating women. However, because this drug can be safely prescribed to infants, the effects are not harmful. Studies with mice show that radioactively tagged chloroquine passed through the placenta rapidly and accumulated in the fetal eyes which remained present five months after the drug was cleared from the rest of the body.[17][19] It is still advised to prevent women who are pregnant or planning on getting pregnant from traveling to malaria-risk regions.[18]

Elderly

There is not enough evidence to determine whether chloroquine is safe to be given to people aged 65 and older. However, the drug is cleared by the kidneys and toxicity should be monitored carefully in people with poor kidney functions.[17]

Drug interactions

  • Antacids- may reduce absorption of chloroquine; take 4 hours apart
  • Kaolin- may reduce absorption of chloroquine; take 4 hours apart
  • Cimetidine- may inhibit metabolism of chloroquine; increasing levels of chloroquine in the body
  • Ampicillin- levels may be reduced by chloroquine; take 2 hours apart
  • Cyclosporine- levels may be increased by chloroquine
  • Mefloquine- may increase risk of convulsions[17]

Overdose

Chloroquine is very dangerous in overdose. It is rapidly absorbed from the gut. In 1961, published studies showed three children who took overdoses died within 2.5 hours of taking the drug. While the amount of the overdose was not cited, the therapeutic index for chloroquine is known to be small.[20] Symptoms of overdose include headache, drowsiness, visual disturbances, nausea and vomiting, cardiovascular collapse, seizures, and sudden respiratory and cardiac arrest.[17]

A metabolite of chloroquine – hydroxychloroquine – has a long half-life (32–56 days) in blood and a large volume of distribution (580–815 L/kg).[21] The therapeutic, toxic and lethal ranges are usually considered to be 0.03 to 15 mg/l, 3.0 to 26 mg/l and 20 to 104 mg/l, respectively. However, nontoxic cases have been reported in the range 0.3 to 39 mg/l, suggesting individual tolerance to this agent may be more variable than previously recognised.[21]

Resistance in malaria

Since the first documentation of P. falciparum chloroquine resistance in the 1950s, resistant strains have appeared throughout East and West Africa, Southeast Asia, and South America. The effectiveness of chloroquine against P. falciparum has declined as resistant strains of the parasite evolved. They effectively neutralize the drug via a mechanism that drains chloroquine away from the digestive vacuole. Chloroquine-resistant cells efflux chloroquine at 40 times the rate of chloroquine-sensitive cells; the related mutations trace back to transmembrane proteins of the digestive vacuole, including sets of critical mutations in the P. falciparum chloroquine resistance transporter (PfCRT) gene. The mutated protein, but not the wild-type transporter, transports chloroquine when expressed in Xenopus oocytes and is thought to mediate chloroquine leak from its site of action in the digestive vacuole.[22] Resistant parasites also frequently have mutated products of the ABC transporter P. falciparum multidrug resistance (PfMDR1) gene, although these mutations are thought to be of secondary importance compared to Pfcrt. Verapamil, a Ca2+ channel blocker, has been found to restore both the chloroquine concentration ability and sensitivity to this drug. Recently, an altered chloroquine-transporter protein CG2 of the parasite has been related to chloroquine resistance, but other mechanisms of resistance also appear to be involved.[23] Research on the mechanism of chloroquine and how the parasite has acquired chloroquine resistance is still ongoing, as other mechanisms of resistance are likely.{{citation needed|date=July 2015}}

Other agents which have been shown to reverse chloroquine resistance in malaria are chlorpheniramine, gefitinib, imatinib, tariquidar and zosuquidar.[24]

Pharmacology

  • Absorption: Rapid and almost completely
  • Distribution: Widely distributed into body tissues
  • Protein binding: 55%
  • Metabolism: Partially hepatic to main metabolite, desethylchloroquine
  • Excretion: Urine (≥50% as unchanged drug); acidification of urine increases elimination

Chloroquine has a very high volume of distribution, as it diffuses into the body's adipose tissue. Chloroquine and related quinines have been associated with cases of retinal toxicity, particularly when provided at higher doses for longer times. Accumulation of the drug may result in deposits that can lead to blurred vision and blindness. With long-term doses, routine visits to an ophthalmologist are recommended.{{citation needed|date=July 2015}}

Chloroquine is also a lysosomotropic agent, meaning it accumulates preferentially in the lysosomes of cells in the body. The pKa for the quinoline nitrogen of chloroquine is 8.5, meaning it is about 10% deprotonated at physiological pH as calculated by the Henderson-Hasselbalch equation. This decreases to about 0.2% at a lysosomal pH of 4.6. Because the deprotonated form is more membrane-permeable than the protonated form, a quantitative "trapping" of the compound in lysosomes results. (A quantitative treatment of this phenomenon involves the pKas of all nitrogens in the molecule; this treatment, however, suffices to show the principle.){{citation needed|date=July 2015}}

The lysosomotropic character of chloroquine is believed to account for much of its antimalarial activity; the drug concentrates in the acidic food vacuole of the parasite and interferes with essential processes. Its lysosomotropic properties further allow for its use for in vitro experiments pertaining to intracellular lipid related diseases,[25][26] autophagy, and apoptosis.[27]

Mechanism of action

Antimalarial

Inside red blood cells, the malarial parasite, which is then in its asexual lifecycle stage, must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasitic cell.{{citation needed|date=July 2015}}

Hemoglobin is composed of a protein unit (digested by the parasite) and a heme unit (not used by the parasite). During this process, the parasite releases the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a nontoxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals.{{citation needed|date=July 2015}}

Chloroquine enters the red blood cell, inhibiting the parasite cell and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form the FP-chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. In essence, the parasite cell drowns in its own metabolic products.[28] Parasites that do not form hemozoin are therefore resistant to chloroquine.[29]

Other

Chloroquine inhibits thiamine uptake.[30] It acts specifically on the transporter SLC19A3.

Against rheumatoid arthritis, it operates by inhibiting lymphocyte proliferation, phospholipase A2, antigen presentation in dendritic cells, release of enzymes from lysosomes, release of reactive oxygen species from macrophages, and production of IL-1.

Names

Brand names include Chloroquine FNA, Resochin, and Dawaquin.

History

Chloroquine was discovered in 1934 by Hans Andersag and coworkers at the Bayer laboratories, who named it "Resochin".[31] It was ignored for a decade because it was considered too toxic for human use. During World War II, United States government-sponsored clinical trials for antimalarial drug development showed unequivocally that chloroquine has a significant therapeutic value as an antimalarial drug. It was introduced into clinical practice in 1947 for the prophylactic treatment of malaria.[32]

Research

  • Chloroquine is in clinical trials as an investigational antiretroviral in humans with HIV-1/AIDS and is being considered in pre-clinical models as a potential antiviral agent against chikungunya fever.[33]
  • The radiosensitizing and chemosensitizing properties of chloroquine are beginning to be exploited in anticancer strategies in humans.[34][35]
  • In biomedicinal science, chloroquine is used for in vitro experiments to inhibit lysosomal degradation of protein products.

See also

  • History of malaria
  • Quinine
  • Artemether

References

1. ^10 11 {{cite web|title=Aralen Phosphate|url=https://www.drugs.com/monograph/aralen-phosphate.html|publisher=The American Society of Health-System Pharmacists|accessdate=Dec 2, 2015|deadurl=no|archiveurl=https://web.archive.org/web/20151208200339/http://www.drugs.com/monograph/aralen-phosphate.html|archivedate=8 December 2015|df=dmy-all}}
2. ^{{cite book|last1=Zumla|first1=edited by Gordon C. Cook, Alimuddin I.|title=Manson's tropical diseases.|date=2009|publisher=Saunders|location=[Edinburgh]|isbn=9781416044703|page=1240|edition=22nd|url=https://books.google.com/books?id=CF2INI0O6l0C&pg=PA1240|deadurl=no|archiveurl=https://web.archive.org/web/20151208055446/https://books.google.com/books?id=CF2INI0O6l0C&pg=PA1240|archivedate=8 December 2015|df=dmy-all}}
3. ^{{cite book|last1=Bhattacharjee|first1=Mrinal|title=Chemistry of Antibiotics and Related Drugs|date=2016|publisher=Springer|isbn=9783319407463|page=184|url=https://books.google.com/books?id=vgXWDAAAQBAJ&pg=PA184|language=en|deadurl=no|archiveurl=https://web.archive.org/web/20161101102221/https://books.google.com/books?id=vgXWDAAAQBAJ&pg=PA184|archivedate=1 November 2016|df=dmy-all}}
4. ^{{cite web|title=WHO Model List of Essential Medicines (19th List)|url=http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1|work=World Health Organization|accessdate=8 December 2016|date=April 2015|deadurl=no|archiveurl=https://web.archive.org/web/20161213052708/http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1|archivedate=13 December 2016|df=dmy-all}}
5. ^{{cite web|title=Chloroquine (Base)|url=http://mshpriceguide.org/en/single-drug-information/?DMFId=160&searchYear=2014|website=International Drug Price Indicator Guide|accessdate=4 December 2015}}
6. ^{{cite journal |author=Plowe CV |title=Antimalarial drug resistance in Africa: strategies for monitoring and deterrence |journal=Curr. Top. Microbiol. Immunol. |volume=295 |pages=55–79 |year=2005 |pmid=16265887 |doi=10.1007/3-540-29088-5_3 |series=Current Topics in Microbiology and Immunology |isbn=3-540-25363-7 }}
7. ^{{cite journal |vauthors=Uhlemann AC, Krishna S |title=Antimalarial multi-drug resistance in Asia: mechanisms and assessment |journal=Curr. Top. Microbiol. Immunol. |volume=295 |pages=39–53 |year=2005 |pmid=16265886 |doi=10.1007/3-540-29088-5_2 |series=Current Topics in Microbiology and Immunology |isbn=3-540-25363-7 }}
8. ^{{Cite web|title = DailyMed - CHLOROQUINE- chloroquine phosphate tablet CHLOROQUINE- chloroquine phosphate tablet, coated|url = http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9b585ad5-ae86-4403-b83f-8d8363d43da5|website = dailymed.nlm.nih.gov|accessdate = 2015-11-04|deadurl = no|archiveurl = https://web.archive.org/web/20151208164343/http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9b585ad5-ae86-4403-b83f-8d8363d43da5|archivedate = 8 December 2015|df = dmy-all}}
9. ^CDC. Health information for international travel 2001–2002. Atlanta, Georgia: U.S. Department of Health and Human Services, Public Health Service, 2001.
10. ^{{EMedicine|article|183920|Amebic Hepatic Abscesses|treatment}}
11. ^{{Cite web|title = DailyMed - CHLOROQUINE- chloroquine phosphate tablet CHLOROQUINE- chloroquine phosphate tablet, coated|url = http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9b585ad5-ae86-4403-b83f-8d8363d43da5|website = dailymed.nlm.nih.gov|accessdate = 2015-11-03|deadurl = no|archiveurl = https://web.archive.org/web/20151208164343/http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=9b585ad5-ae86-4403-b83f-8d8363d43da5|archivedate = 8 December 2015|df = dmy-all}}
12. ^{{cite journal |author=Ajayi AA |title=Mechanisms of chloroquine-induced pruritus |journal=Clin. Pharmacol. Ther. |volume=68 |issue=3 |pages=336 |date=September 2000 |pmid=11014416 }}
13. ^{{cite journal |last1=Vaziri |first1=A. |last2=Warburton |first2=B. |title=Slow release of chloroquine phosphate from multiple taste-masked W/O/W multiple emulsions |journal=Journal of Microencapsulation |volume=11 |issue=6 |pages=641–8 |year=1994 |pmid=7884629 |doi=10.3109/02652049409051114 }}
14. ^{{cite journal |last1=Michaelides |first1=Michel |title=Retinal Toxicity Associated With Hydroxychloroquine and Chloroquine |journal=Archives of Ophthalmology |volume=129 |issue=1 |pages=30–9 |year=2011 |pmid=21220626 |doi=10.1001/archophthalmol.2010.321 }}
15. ^{{cite web |url=http://www.numericalexample.com/index.php?view=article&id=24 |title=Determine the safe dose of medicins: Chloroquine and Hydroxychloroquine (Plaquenil) |deadurl=no |archiveurl=https://web.archive.org/web/20150906002911/http://www.numericalexample.com/index.php?view=article&id=24 |archivedate=6 September 2015 |df=dmy-all }}{{unreliable source?|date=July 2015}}
16. ^{{cite journal |last1=Tönnesmann |first1=Ernst |last2=Kandolf |first2=Reinhard |last3=Lewalter |first3=Thorsten |title=Chloroquine cardiomyopathy – a review of the literature |journal=Immunopharmacology and Immunotoxicology |volume=35 |issue=3 |pages=434–42 |year=2013 |pmid=23635029 |doi=10.3109/08923973.2013.780078 }}
17. ^{{Cite web|url = http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/006002s043lbl.pdf|title = ARALEN® CHLOROQUINE PHOSPHATE, USP|date = |accessdate = 2015-11-05|website = |publisher = |deadurl = no|archiveurl = https://web.archive.org/web/20151208212413/http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/006002s043lbl.pdf|archivedate = 8 December 2015|df = dmy-all}}
18. ^{{Cite web|title = Malaria - Chapter 3 - 2016 Yellow Book {{!}} Travelers' Health {{!}} CDC|url = http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/malaria|website = wwwnc.cdc.gov|accessdate = 2015-11-11|deadurl = no|archiveurl = https://web.archive.org/web/20160114185552/http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/malaria|archivedate = 14 January 2016|df = dmy-all}}
19. ^{{Cite journal|url = |title = Accumulation of chorioretinotoxic drugs in the foetal eye|date = Sep 1970|journal = Nature|doi = 10.1038/2271257a0|pmid = 5452818 |volume=227 |pages=1257–8 |author=Ullberg S, Lindquist NG, Sjòstrand SE}}
20. ^{{cite journal |last1=Cann |first1=Howard M. |last2=Verhulst |first2=Henry L. |title=Fatal acute chloroquine poisoning in children |journal=Pediatrics |volume=27 |issue= |pages=95–102 |year=1961 |pmid=13690445 |url=http://pediatrics.aappublications.org/cgi/pmidlookup?view=long&pmid=13690445}}
21. ^{{cite journal |last1=Molina |first1=D. Kimberley |title=Postmortem Hydroxychloroquine Concentrations in Nontoxic Cases |journal=The American Journal of Forensic Medicine and Pathology |volume=33 |issue=1 |pages=41–2 |year=2012 |pmid=21464694 |doi=10.1097/PAF.0b013e3182186f99 }}
22. ^{{cite journal |last1=Martin |first1=R. E. |last2=Marchetti |first2=R. V. |last3=Cowan |first3=A. I. |last4=Howitt |first4=S. M. |last5=Broer |first5=S. |last6=Kirk |first6=K. |title=Chloroquine Transport via the Malaria Parasite's Chloroquine Resistance Transporter |journal=Science |volume=325 |issue=5948 |pages=1680–2 |year=2009 |pmid=19779197 |doi=10.1126/science.1175667 |bibcode = 2009Sci...325.1680M }}
23. ^Essentials of medical pharmacology fifth edition 2003, reprint 2004, published by-Jaypee Brothers Medical Publisher Ltd, 2003, KD Tripathi, pages 739,740.
24. ^{{cite journal |last1=Alcantara |first1=Laura M. |last2=Kim |first2=Junwon |last3=Moraes |first3=Carolina B. |last4=Franco |first4=Caio H. |last5=Franzoi |first5=Kathrin D. |last6=Lee |first6=Sukjun |last7=Freitas-Junior |first7=Lucio H. |last8=Ayong |first8=Lawrence S. |title=Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites |journal=Experimental Parasitology |volume=134 |issue=2 |pages=235–43 |year=2013 |pmid=23541983 |doi=10.1016/j.exppara.2013.03.022 }}
25. ^{{cite journal |last1=Chen |first1=Patrick M |last2=Gombart |first2=Zoë J |last3=Chen |first3=Jeff W |title=Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration |journal=Cell & Bioscience |volume=1 |issue=1 |pages=10 |year=2011 |pmid=21711726 |pmc=3125200 |doi=10.1186/2045-3701-1-10 }}
26. ^{{cite journal |last1=Kurup |first1=Pradeep |last2=Zhang |first2=Yongfang |last3=Xu |first3=Jian |last4=Venkitaramani |first4=Deepa V. |last5=Haroutunian |first5=Vahram |last6=Greengard |first6=Paul |last7=Nairn |first7=Angus C. |last8=Lombroso |first8=Paul J. |title=Aβ-Mediated NMDA Receptor Endocytosis in Alzheimer's Disease Involves Ubiquitination of the Tyrosine Phosphatase STEP61|journal=Journal of Neuroscience |volume=30 |issue=17 |pages=5948–57 |year=2010 |pmid=20427654 |pmc=2868326 |doi=10.1523/JNEUROSCI.0157-10.2010 }}
27. ^{{cite journal |last1=Kim |first1=Ella L. |last2=Wüstenberg |first2=Robin |last3=Rübsam |first3=Anne |last4=Schmitz-Salue |first4=Christoph |last5=Warnecke |first5=Gabriele |last6=Bucker |first6=Eva-Maria |last7=Pettkus |first7=Nadine |last8=Speidel |first8=Daniel |last9=Rohde |first9=Veit |last10=Schulz-Schaeffer |first10=Walter |last11=Deppert |first11=Wolfgang |last12=Giese |first12=Alf |title=Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells|journal=Neuro-Oncology |volume=12 |issue=4 |pages=389–400 |year=2010 |pmid=20308316 |pmc=2940600 |doi=10.1093/neuonc/nop046 }}
28. ^{{cite journal | author = Hempelmann E.| title = Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors| journal = Parasitol Research | volume = 100 | issue = 4 | pages = 671–676 | year = 2007 | pmid = 17111179 | doi = 10.1007/s00436-006-0313-x}}
29. ^{{cite journal |vauthors=Lin JW, Spaccapelo R, Schwarzer E, etal | title = Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance. | journal = J Exp Med | date = 2015 | pmid = 25941254 | doi = 10.1084/jem.20141731 | volume=212 | pages=893–903 | pmc=4451122| url=https://lirias.kuleuven.be/bitstream/123456789/500975/3/2015113.pdf }}
30. ^{{cite journal |last1=Liu |first1=Jun |last2=Huang |first2=Zhiwei |last3=Srinivasan |first3=Sankaranarayanan |last4=Zhang |first4=Jianhuai |last5=Chen |first5=Kaifu |last6=Li |first6=Yongxiang |last7=Li |first7=Wei |last8=Quiocho |first8=Florante A. |last9=Pan |first9=Xuewen |title=Discovering Thiamine Transporters as Targets of Chloroquine Using a Novel Functional Genomics Strategy |journal=PLoS Genetics |volume=8 |issue=11 |pages=e1003083 |year=2012 |pmid=23209439 |pmc=3510038 |doi=10.1371/journal.pgen.1003083 }}
31. ^{{cite journal |last1=Krafts |first1=Kristine |last2=Hempelmann |first2=Ernst |last3=Skórska-Stania |first3=Agnieszka |title=From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy |journal=Parasitology Research |volume=111 |issue=1 |pages=1–6 |year=2012 |pmid=22411634 |doi=10.1007/s00436-012-2886-x }}
32. ^{{cite web | url = https://www.cdc.gov/malaria/history/index.htm#chloroquine | title = The History of Malaria, an Ancient Disease | publisher = Centers for Disease Control | deadurl = no | archiveurl = https://web.archive.org/web/20100828183012/http://www.cdc.gov//malaria//history//index.htm#chloroquine | archivedate = 28 August 2010 | df = dmy-all }}
33. ^{{cite journal |vauthors=Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R |title=Effects of chloroquine on viral infections: an old drug against today's diseases? |journal=Lancet Infect Dis |volume=3 |issue=11 |pages=722–7 |date=November 2003 |pmid=14592603 |doi=10.1016/S1473-3099(03)00806-5}}
34. ^{{cite journal |vauthors=Savarino A, Lucia MB, Giordano F, Cauda R |title=Risks and benefits of chloroquine use in anticancer strategies |journal=Lancet Oncol. |volume=7 |issue=10 |pages=792–3 |date=October 2006 |pmid=17012039 |doi=10.1016/S1470-2045(06)70875-0 }}
35. ^{{cite journal |vauthors=Sotelo J, Briceño E, López-González MA |title=Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial |journal=Ann. Intern. Med. |volume=144 |issue=5 |pages=337–43 |date=March 2006 |pmid=16520474 |doi=10.7326/0003-4819-144-5-200603070-00008}}
{{cite journal |title=Summaries for patients. Adding chloroquine to conventional chemotherapy and radiotherapy for glioblastoma multiforme |journal=Ann. Intern. Med. |volume=144 |issue=5 |pages=I31 |date=March 2006 |pmid=16520470 |doi=10.7326/0003-4819-144-5-200603070-00004}}

External links

{{Scholia|topic}}
  • Chloroquine Anti-HIV action
  • Chloroquine and imatinib
{{Antimalarials}}{{Antirheumatic products}}{{Glutamate metabolism and transport modulators}}{{Use dmy dates|date=April 2011}}{{Authority control}}{{portal bar|Pharmacy and pharmacology|Medicine}}

6 : Antimalarial agents|Antirheumatic products|Quinolines|Chloroarenes|RTT|World Health Organization essential medicines

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 5:14:15