释义 |
- Mathematical properties
- In other fields
- Integers from 601 to 699 600s 610s 620s 630s 640s 650s 660s 670s 680s 690s
- References
{{For|the years 600|600s BC (decade)|600s (disambiguation){{!}}600s|600}}{{Infobox number | number = 600 | divisor = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600 }}600 (six hundred) is the natural number following 599 and preceding 601. {{TOC limit|3}}Mathematical propertiesSix hundred is a composite number, an abundant number, a pronic number[1] and a Harshad number. In other fields- In the United States, a credit score of 600 or below is considered a poor score, thus limiting available credit (or requiring the borrower to pay higher interest rates).
- 600 is the advertised number of miles that NASCAR runs in the Coca-Cola 600, the longest race on any of the NASCAR circuits.
- Fiat 600
- In Latin, sescenti often denoted a very large but indefinite number, perhaps from the size of a Roman cohort.[2]
Integers from 601 to 699600s- 601 = prime number, centered pentagonal number[3]
- 602 = 2 × 7 × 43, nontotient, area code for Phoenix, AZ along with 480 and 623
- 603 = 32 × 67, Harshad number, area code for New Hampshire
- 604 = 22 × 151, nontotient, totient sum for first 44 integers, area code for southwestern British Columbia (Lower Mainland, Fraser Valley, Sunshine Coast and Sea to Sky)
- 605 = 5 × 112, Harshad number
- 606 = 2 × 3 × 101, sphenic number, sum of six consecutive primes (89 + 97 + 101 + 103 + 107 + 109)
- 607 - prime number, sum of three consecutive primes (197 + 199 + 211), Mertens function(607) = 0, balanced prime,[4] strictly non-palindromic number[5]
- 608 = 25 × 19, Mertens function(608) = 0, nontotient, happy number
- 609 = 3 × 7 × 29, sphenic number
610s- 610 = 2 × 5 × 61, sphenic number, nontotient, Fibonacci number,[6] Markov number.[7] Also a kind of telephone wall socket used in Australia.
- 611 = 13 × 47, sum of the three standard board sizes in Go (92 + 132 + 192)
- 612 = 22 × 32 × 17, Harshad number, area code for Minneapolis, MN
{{Main|613 (number)}}- 613 = prime number, first number of prime triple (p, p + 4, p + 6), middle number of sexy prime triple (p − 6, p, p + 6). Geometrical numbers: Centered square number with 18 per side, circular number of 21 with a square grid and 27 using a triangular grid. Also 17-gonal. Hypotenuse of a right triangle with integral sides, these being 35 and 612. Partitioning: 613 partitions of 47 into non-factor primes, 613 non-squashing partitions into distinct parts of the number 54. Squares: Sum of squares of two consecutive integers, 17 and 18. Additional properties: a lucky number.
- In Judaism the number 613 is very significant, as its metaphysics, the Kabbalah, views every complete entity as divisible into 613 parts: 613 parts of every Sefirah; 613 mitzvot, or divine Commandments in the Torah; 613 parts of the human body.
- The number 613 hangs from the rafters at Madison Square Garden in honor of legendary New York Knicks coach Red Holzman's 613 victories.
- 614 = 2 × 307, nontotient. According to Rabbi Emil Fackenheim, the number of Commandments in Judaism should be 614 rather than the traditional 613.
- 615 = 3 × 5 × 41, sphenic number
{{Main|616 (number)}}- 616 = 23 × 7 × 11, Padovan number, an alternative value for the Number of the Beast (more commonly accepted to be 666).
- 617 = prime number, sum of five consecutive primes (109 + 113 + 127 + 131 + 137), Chen prime, Eisenstein prime with no imaginary part
- Area code 617, a telephone area code covering the metropolitan Boston area.
- 618 = 2 × 3 × 103, sphenic number.
- 619 = prime number, strobogrammatic prime,[8] alternating factorial[9]
620s- 620 = 22 × 5 × 31, sum of four consecutive primes (149 + 151 + 157 + 163), sum of eight consecutive primes (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97)
- 621 = 33 × 23, Harshad number
- 622 = 2 × 311, nontotient. It is also the standard diameter of modern road bicycle wheels (622 mm, from hook bead to hook bead)
- 623 = 7 × 89
- 624 = 24 × 3 × 13, sum of a twin prime (311 + 313), Harshad number, Zuckerman number
- 625 = 54 = 252, sum of seven consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103), centered octagonal number,[10] 1-automorphic number, Friedman number since 625 = 56−2[11]
- 626 = 2 × 313, nontotient
- 627 = 3 × 11 × 19, sphenic number, number of integer partitions of 20,[12] Smith number[13]
- 628 = 22 × 157, nontotient, totient sum for first 45 integers
- 629 = 17 × 37, highly cototient number,[14] Harshad number
630s- 630 = 2 × 32 × 5 × 7, sum of six consecutive primes (97 + 101 + 103 + 107 + 109 + 113), triangular number, hexagonal number,[15] sparsely totient number,[16] Harshad number
- 631 = prime number, centered triangular number,[17] centered hexagonal number,[18] Chen prime; (other fields) {{anchor|631 other fields}}the number of seats in Bundestag
- 632 = 23 × 79
- 633 = 3 × 211, sum of three consecutive primes (199 + 211 + 223); also, in the title of the movie 633 Squadron
- 634 = 2 × 317, nontotient, Smith number[13]
- 635 = 5 × 127, sum of nine consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89), Mertens function(635) = 0.
- "Project 635", the Irtysh River diversion project in China involving a dam and a canal.
- 636 = 22 × 3 × 53, sum of ten consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83), Smith number,[13] Mertens function(636) = 0,
- 637 = 72 × 13, Mertens function(637) = 0, decagonal number[19]
- 638 = 2 × 11 × 29, sphenic number, sum of four consecutive primes (151 + 157 + 163 + 167), nontotient, centered heptagonal number[20]
- 639 = 32 × 71, sum of the first twenty primes, also ISO 639 is the ISO's standard for codes for the representation of languages
640s- 640 = 27 × 5, Harshad number, number of acres in a square mile
- 641= prime number, Sophie Germain prime,[21] factor of 4294967297 (the smallest nonprime Fermat number), Chen prime, Eisenstein prime with no imaginary part, Proth prime[22]
- 642 = 2 × 3 × 107, sphenic number
- 643 = prime number, largest prime factor of 123456
- 644 = 22 × 7 × 23, nontotient, Perrin number,[23] Harshad number, common umask.
- 645 = 3 × 5 × 43, sphenic number, Smith number,[13] Fermat pseudoprime to base 2,[24] Harshad number
- 646 = 2 × 17 × 19, sphenic number, also ISO 646 is the ISO's standard for international 7-bit variants of ASCII
- 647 = prime number, sum of five consecutive primes (113 + 127 + 131 + 137 + 139), Chen prime, Eisenstein prime with no imaginary part
- 648 = 23 × 34, Harshad number
- 649 = 11 × 59
650s- 650 = 2 × 52 × 13, primitive abundant number,[25] square pyramidal number,[26] pronic number,[1] nontotient, totient sum for first 46 integers; (other fields) {{anchor|650 other fields}}the number of seats in the House of Commons of the United Kingdom
- 651 = 3 × 7 × 31, sphenic number, pentagonal number,[27] nonagonal number[28]
- 652 = 22 × 163
- 653 = prime number, Sophie Germain prime,[21] balanced prime,[4] Chen prime, Eisenstein prime with no imaginary part
- 654 = 2 × 3 × 109, sphenic number, nontotient, Smith number[13]
- 655 = 5 × 131
- 656 = 24 × 41. In Judaism, 656 is the number of times that Jerusalem is mentioned in the Hebrew Bible or Old Testament.
- 657 = 32 × 73, the largest known number not of the form a2+s with s a semiprime
- 658 = 2 × 7 × 47, sphenic number
- 659 = prime number, Sophie Germain prime,[21] sum of seven consecutive primes (79 + 83 + 89 + 97 + 101 + 103 + 107), Chen prime, Mertens function sets new low of −10 which stands until 661, highly cototient number,[14] Eisenstein prime with no imaginary part, strictly non-palindromic number[5]
660s- 660 = 22 × 3 × 5 × 11, sum of four consecutive primes (157 + 163 + 167 + 173), sum of six consecutive primes (101 + 103 + 107 + 109 + 113 + 127), sum of eight consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101), sparsely totient number,[16] Harshad number
- 661 = prime number, sum of three consecutive primes (211 + 223 + 227), Mertens function sets new low of −11 which stands until 665, star number
- 662 = 2 × 331, nontotient, member of Mian–Chowla sequence[29]
- 663 = 3 × 13 × 17, sphenic number, Smith number[13]
- 664 = 23 × 83
Country calling code for Montserrat (+1) 664 - 665 = 5 × 7 × 19, sphenic number, Mertens function sets new low of −12 which stands until 1105
{{Main|666 (number)}}- 666 = 2 × 32 × 37, repdigit
- 667 = 23 × 29
- 668 = 22 × 167, nontotient
- 669 = 3 × 223
670s- 670 = 2 × 5 × 67, sphenic number, octahedral number,[30] nontotient
- 671 = 11 × 61. This number is the magic constant of n×n normal magic square and n-queens problem for n = 11.
- 672 = 25 × 3 × 7, harmonic divisor number,[31] Zuckerman number,
- 673 = prime number, Proth prime[22]
- 674 = 2 × 337, nontotient
- 675 = 33 × 52, Achilles number
- 676 = 22 × 132 = 262
- 677 = prime number, Chen prime, Eisenstein prime with no imaginary part
- 678 = 2 × 3 × 113, sphenic number, nontotient
- 679 = 7 × 97, sum of three consecutive primes (223 + 227 + 229), sum of nine consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97)
680s- 680 = 23 × 5 × 17, tetrahedral number,[32] nontotient
- 681 = 3 × 227, centered pentagonal number[3]
- 682 = 2 × 11 × 31, sphenic number, sum of four consecutive primes (163 + 167 + 173 + 179), sum of ten consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89)
- 683 = prime number, Sophie Germain prime,[21] sum of five consecutive primes (127 + 131 + 137 + 139 + 149), Chen prime, Eisenstein prime with no imaginary part, Wagstaff prime[33]
- 684 = 22 × 32 × 19, Harshad number
- 685 = 5 × 137, centered square number[34]
- 686 = 2 × 73, nontotient,
The code for international direct dial phone calls to Kiribati. i686 is another name for Intel P6 microarchitecture. - 687 = 3 × 229
- 688 = 24 × 43, Friedman number since 688 = 8 × 86[11]
- 689 = 13 × 53, sum of three consecutive primes (227 + 229 + 233), sum of seven consecutive primes (83 + 89 + 97 + 101 + 103 + 107 + 109). Strobogrammatic number[35]
690s- 690 = 2 × 3 × 5 × 23, sum of six consecutive primes (103 + 107 + 109 + 113 + 127 + 131), sparsely totient number,[16] Smith number,[13] Harshad number
- ISO 690 is the ISO's standard for bibliographic references
- 691 = prime number, (negative) numerator of the Bernoulli number B12 = -691/2730. Ramanujan's tau function τ and the divisor function σ11 are related by the remarkable congruence τ(n) ≡ σ11(n) (mod 691).
- In number theory, 691 is a "marker" (similar to the radioactive markers in biology): whenever it appears in a computation, one can be sure that Bernoulli numbers are involved.
- 692 = 22 × 173
- 693 = 32 × 7 × 11, the number of the "non-existing" Alabama State Constitution amendment, the number of sections in Ludwig Wittgenstein's Philosophical Investigations.
- 694 = 2 × 347, centered triangular number,[17] nontotient
- 695 = 5 × 139. The number of people dead in the single deadliest tornado in United States history
- 696 = 23 × 3 × 29, sum of eight consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), totient sum for first 47 integers
- 697 = 17 × 41
- 698 = 2 × 349, nontotient
- 699 = 3 × 233
References 1. ^1 {{Cite web|url=https://oeis.org/A002378|title=Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 2. ^Lewis and Short, A Latin Dictionary, s.v. sescenti 3. ^1 {{Cite web|url=https://oeis.org/A005891|title=Sloane's A005891 : Centered pentagonal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 4. ^1 {{Cite web|url=https://oeis.org/A006562|title=Sloane's A006562 : Balanced primes|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 5. ^1 {{Cite web|url=https://oeis.org/A016038|title=Sloane's A016038 : Strictly non-palindromic numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 6. ^{{Cite web|url=https://oeis.org/A000045|title=Sloane's A000045 : Fibonacci numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 7. ^{{Cite web|url=https://oeis.org/A002559|title=Sloane's A002559 : Markoff (or Markov) numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 8. ^{{Cite web|url=https://oeis.org/A007597|title=Sloane's A007597 : Strobogrammatic primes|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 9. ^{{Cite web|url=https://oeis.org/A005165|title=Sloane's A005165 : Alternating factorials|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 10. ^{{Cite web|url=https://oeis.org/A016754|title=Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 11. ^1 {{Cite web|url=https://oeis.org/A036057|title=Sloane's A036057 : Friedman numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 12. ^{{Cite web|url=https://oeis.org/A000041|title=Sloane's A000041 : a(n) = number of partitions of n|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 13. ^1 2 3 4 5 6 {{Cite web|url=https://oeis.org/A006753|title=Sloane's A006753 : Smith numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 14. ^1 {{Cite web|url=https://oeis.org/A100827|title=Sloane's A100827 : Highly cototient numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 15. ^{{Cite web|url=https://oeis.org/A000384|title=Sloane's A000384 : Hexagonal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 16. ^1 2 {{Cite web|url=https://oeis.org/A036913|title=Sloane's A036913 : Sparsely totient numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundatioin|access-date=2016-06-11}} 17. ^1 {{Cite web|url=https://oeis.org/A005448|title=Sloane's A005448 : Centered triangular numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 18. ^{{Cite web|url=https://oeis.org/A003215|title=Sloane's A003215 : Hex (or centered hexagonal) numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 19. ^{{Cite web|url=https://oeis.org/A001107|title=Sloane's A001107 : 10-gonal (or decagonal) numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 20. ^{{Cite web|url=https://oeis.org/A069099|title=Sloane's A069099 : Centered heptagonal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 21. ^1 2 3 {{Cite web|url=https://oeis.org/A005384|title=Sloane's A005384 : Sophie Germain primes|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 22. ^1 {{Cite web|url=https://oeis.org/A080076|title=Sloane's A080076 : Proth primes|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 23. ^{{Cite web|url=https://oeis.org/A001608|title=Sloane's A001608 : Perrin sequence|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 24. ^{{Cite web|url=https://oeis.org/A001567|title=Sloane's A001567 : Fermat pseudoprimes to base 2|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 25. ^{{Cite web|url=https://oeis.org/A071395|title=Sloane's A071395 : Primitive abundant numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 26. ^{{Cite web|url=https://oeis.org/A000330|title=Sloane's A000330 : Square pyramidal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 27. ^{{Cite web|url=https://oeis.org/A000326|title=Sloane's A000326 : Pentagonal numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 28. ^{{Cite web|url=https://oeis.org/A001106|title=Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 29. ^{{Cite web|url=https://oeis.org/A005282|title=Sloane's A005282 : Mian-Chowla sequence|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 30. ^{{Cite web|url=https://oeis.org/A005900|title=Sloane's A005900 : Octahedral numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 31. ^{{Cite web|url=https://oeis.org/A001599|title=Sloane's A001599 : Harmonic or Ore numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 32. ^{{Cite web|url=https://oeis.org/A000292|title=Sloane's A000292 : Tetrahedral numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 33. ^{{Cite web|url=https://oeis.org/A000979|title=Sloane's A000979 : Wagstaff primes|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 34. ^{{Cite web|url=https://oeis.org/A001844|title=Sloane's A001844 : Centered square numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}} 35. ^{{Cite web|url=https://oeis.org/A000787|title=Sloane's A000787 : Strobogrammatic numbers|website=The On-Line Encyclopedia of Integer Sequences|publisher=OEIS Foundation|access-date=2016-06-11}}
{{Integers|6}} 1 : Integers |