请输入您要查询的百科知识:

 

词条 Hartman–Grobman theorem
释义

  1. Main theorem

  2. Example

  3. See also

  4. References

  5. Further reading

  6. External links

In mathematics, in the study of dynamical systems, the Hartman–Grobman theorem or linearization theorem is a theorem about the local behavior of dynamical systems in the neighbourhood of a hyperbolic equilibrium point. It asserts that linearization—a natural simplification of the system—is effective in predicting qualitative patterns of behavior.

The theorem states that the behavior of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behavior of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part equal to zero. Therefore, when dealing with such dynamical systems one can use the simpler linearization of the system to analyze its behavior around equilibria.[1]

Main theorem

Consider a system evolving in time with state that satisfies the differential equation for some smooth map . Suppose the map has a hyperbolic equilibrium state : that is, and the Jacobian matrix of at state has no eigenvalue with real part equal to zero. Then there exists a neighborhood of the equilibrium and a homeomorphism ,

such that and such that in the neighbourhood the flow of is topologically conjugate by the continuous map to the flow of its linearization .[2][3][4][5]

Even for infinitely differentiable maps , the homeomorphism need not to be smooth, nor even locally Lipschitz. However, it turns out to be Hölder continuous, with an exponent depending on the constant of hyperbolicity of .[6]

The Hartman–Grobman theorem has been extended to infinite-dimensional Banach spaces, non-autonomous systems (potentially stochastic), and to cater for the topological differences that occur when there are eigenvalues with zero or near-zero real-part.[7][8][9][10]

Example

The algebra necessary for this example is easily carried out by a web service that computes normal form coordinate transforms of systems of differential equations, autonomous or non-autonomous, deterministic or stochastic.[11]

Consider the 2D system in variables evolving according to the pair of coupled differential equations

By direct computation it can be seen that the only equilibrium of this system lies at the origin, that is . The coordinate transform, where , given by

is a smooth map between the original and new coordinates, at least near the equilibrium at the origin. In the new coordinates the dynamical system transforms to its linearisation

That is, a distorted version of the linearization gives the original dynamics in some finite neighbourhood.

See also

  • Stable manifold theorem

References

1. ^{{cite book |first=D. K. |last=Arrowsmith |first2=C. M. |last2=Place |title=Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour |chapter=The Linearization Theorem |publisher=Chapman & Hall |location=London |year=1992 |isbn=978-0-412-39080-7 |pages=77–81 |chapterurl=https://books.google.com/books?id=8qCcP7KNaZ0C&pg=PA77 }}
2. ^{{cite journal|last = Grobman|first = D. M.|title=О гомеоморфизме систем дифференциальных уравнений|trans-title= Homeomorphisms of systems of differential equations|journal = Doklady Akademii Nauk SSSR|volume = 128|pages = 880–881|year = 1959}}
3. ^{{cite journal|last = Hartman|first = Philip|authorlink=Philip Hartman|title = A lemma in the theory of structural stability of differential equations|journal = Proc. A.M.S.|volume = 11|issue = 4|pages = 610–620|doi = 10.2307/2034720|date=August 1960|jstor=2034720}}
4. ^{{cite journal|last = Hartman|first = Philip|title = On local homeomorphisms of Euclidean spaces|journal = Bol. Soc. Math. Mexicana|volume = 5|pages = 220–241|year = 1960}}
5. ^{{cite book |first=C. |last=Chicone |title=Ordinary Differential Equations with Applications |volume=34 |series=Texts in Applied Mathematics |location= |publisher=Springer |edition=2nd |year=2006 |isbn=978-0-387-30769-5 }}
6. ^{{cite paper |first=Genrich |last=Belitskii |first2=Victoria |last2=Rayskin |year=2011 |title=On the Grobman–Hartman theorem in α-Hölder class for Banach spaces |work=Working paper |url=http://www.ma.utexas.edu/mp_arc/c/11/11-134.pdf }}
7. ^{{cite book |first=B. |last=Aulbach |first2=T. |last2=Wanner |chapter=Integral manifolds for Caratheodory type differential equations in Banach spaces |editor-first=B. |editor-last=Aulbach |editor2-first=F. |editor2-last=Colonius |title=Six Lectures on Dynamical Systems |pages=45–119 |publisher=World Scientific |location=Singapore |year=1996 |isbn=978-981-02-2548-3 }}
8. ^{{cite book |first=B. |last=Aulbach |first2=T. |last2=Wanner |chapter=Invariant Foliations for Carathéodory Type Differential Equations in Banach Spaces |editor-first=V. |editor-last=Lakshmikantham |editor2-first=A. A. |editor2-last=Martynyuk |title=Advances in Stability Theory at the End of the 20th Century |publisher=Gordon & Breach |year=1999 |isbn=978-0-415-26962-9 |citeseerx=10.1.1.45.5229 }}
9. ^{{cite journal | last1 = Aulbach | first1 = B. | last2 = Wanner | first2 = T. | year = 2000 | title = The Hartman–Grobman theorem for Caratheodory-type differential equations in Banach spaces | url = | journal = Non-linear Analysis | volume = 40 | issue = 1–8| pages = 91–104 | doi = 10.1016/S0362-546X(00)85006-3 }}
10. ^{{cite journal | last1 = Roberts | first1 = A. J. | year = 2008 | title = Normal form transforms separate slow and fast modes in stochastic dynamical systems | doi = 10.1016/j.physa.2007.08.023 | journal = Physica A | volume = 387 | issue = 1| pages = 12–38 | arxiv = math/0701623 | bibcode = 2008PhyA..387...12R }}
11. ^{{cite web |first=A. J. |last=Roberts |title=Normal form of stochastic or deterministic multiscale differential equations |url=http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php |year=2007 |archiveurl=https://web.archive.org/web/20131109164316/http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php |archivedate=November 9, 2013 }}

Further reading

  • {{cite book |first=Lawrence |last=Perko |title=Differential Equations and Dynamical Systems |location=New York |publisher=Springer |edition=Third |year=2001 |isbn=978-0-387-95116-4 |pages=119–127 }}

External links

  • {{cite journal|last = Coayla-Teran|first = E. |author2=Mohammed, S. |author3=Ruffino, P.|title = Hartman–Grobman Theorems along Hyperbolic Stationary Trajectories|journal = Discrete and Continuous Dynamical Systems|volume = 17|issue = 2|pages = 281–292|date=February 2007|url = http://sfde.math.siu.edu/Hartmangrobman.pdf|accessdate = 2007-03-09|doi = 10.3934/dcds.2007.17.281}}
  • {{cite book| last = Teschl| given = Gerald|authorlink=Gerald Teschl| title = Ordinary Differential Equations and Dynamical Systems| publisher=American Mathematical Society| place = Providence| year = 2012| isbn= 978-0-8218-8328-0| url = http://www.mat.univie.ac.at/~gerald/ftp/book-ode/}}
  • {{cite web |title=The Most Addictive Theorem in Applied Mathematics |url=https://blogs.scientificamerican.com/roots-of-unity/the-most-addictive-theorem-in-applied-mathematics/ |website=Scientific American}}
{{DEFAULTSORT:Hartman-Grobman Theorem}}

3 : Theorems in analysis|Theorems in dynamical systems|Approximations

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 9:21:18