请输入您要查询的百科知识:

 

词条 Height function
释义

  1. Significance

  2. Height functions in Diophantine geometry

     History  Naive height  Néron–Tate height  Weil height  Arakelov height  Faltings height 

  3. Height functions in algebra

     Height of a polynomial  Relation to Mahler measure 

  4. See also

  5. References

  6. External links

{{short description|Mathematical functions that quantify complexity}}{{About|mathematical functions that quantify complexity|other uses of height|Height (disambiguation)}}

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers.[1]

{{TOC limit|3}}

Significance

Height functions allow mathematicians to count objects that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's theorem in transcendental number theory which was proved by {{harvs|txt|authorlink=Alan Baker (mathematician)|first=Alan|last= Baker|year1=1966|year2=1967a|year3=1967b}}.

In other cases, height functions can distinguish some objects based on their complexity. For instance, the subspace theorem proved by {{harvs|txt|authorlink=Wolfgang M. Schmidt|first=Wolfgang M. |last=Schmidt|year= 1972}} demonstrates that points of small height (i.e. small complexity) in projective space lie in a finite number of hyperplanes and generalizes Siegel's theorem on integral points and solution of the S-unit equation.[2]

Height functions were crucial to the proofs of the Mordell–Weil theorem and Faltings's theorem by {{harvs|txt||last=Weil|authorlink=André Weil|year=1929}} and {{harvs|txt|last=Faltings|authorlink=Gerd Faltings|year=1983}} respectively. Several outstanding unsolved problems about the heights of rational points on algebraic varieties, such as the Manin conjecture and Vojta's conjecture, have far-reaching implications for problems in Diophantine approximation, Diophantine equations, arithmetic geometry, and mathematical logic.[3][4]

Height functions in Diophantine geometry

History

Heights in Diophantine geometry were initially developed by André Weil and Douglas Northcott beginning in the 1920s.[5] Innovations in 1960s were the Néron–Tate height and the realization that heights were linked to projective representations in much the same way that ample line bundles are in other parts of algebraic geometry. In the 1970s, Suren Arakelov developed Arakelov heights in Arakelov theory.[6] In 1983, Faltings developed his theory of Faltings heights in his proof of Faltings's theorem.[7]

Naive height

Classical or naive height is defined in terms of ordinary absolute value on homogeneous coordinates: it is now usual to take a logarithmic scale, that is, height is proportional to the "algebraic complexity" or number of bits needed to store a point.[8]

It is typically defined to be the logarithm of the maximum absolute value of the vector of coprime integers obtained by multiplying through by a lowest common denominator. This may be used to define height on a point in projective space over Q, or of a polynomial, regarded as a vector of coefficients, or of an algebraic number, from the height of its minimal polynomial.[9]

Néron–Tate height

{{Main|Néron–Tate height}}

The Néron–Tate height, or canonical height, is a quadratic form on the Mordell–Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate.

Weil height

The Weil height is defined on a projective variety X over a number field K equipped with a line bundle L on X. Given a very ample line bundle L0 on X, one may define a height function using the naive height function h. Since L0' is very ample, its complete linear system gives a map ϕ from X to projective space. Then for all points p on X, define

One may write an arbitrary line bundle L on X as the difference of two very ample line bundles L1 and L2 on X, up to Serre's twisting sheaf O(1), so one may define the Weil height hL on X with respect to L via

(up to O(1)).[10][11]

Arakelov height

The Arakelov height on a projective space over the field of algebraic numbers is a global height function with local contributions coming from Fubini–Study metrics on the Archimedean fields and the usual metric on the non-Archimedean fields.[12][13] It is the usual Weil height equipped with a different metric.[14]

Faltings height

The Faltings height of an abelian variety defined over a number field is a measure of its arithmetic complexity. It is defined in terms of the height of a metrized line bundle. It was introduced by {{harvs|txt|last=Faltings|authorlink=Gerd Faltings|year=1983}} in his proof of the Mordell conjecture.

Height functions in algebra

Height of a polynomial

For a polynomial P of degree n given by

the height H(P) is defined to be the maximum of the magnitudes of its coefficients:[15]

One could similarly define the length L(P) as the sum of the magnitudes of the coefficients:

Relation to Mahler measure

The Mahler measure M(P) of P is also a measure of the complexity of P.[16] The three functions H(P), L(P) and M(P) are related by the inequalities

where is the binomial coefficient.

See also

  • abc conjecture
  • Birch and Swinnerton-Dyer conjecture
  • Elliptic Lehmer conjecture
  • Heath-Brown–Moroz constant
  • Height zeta function
  • Raynaud's isogeny theorem

References

1. ^{{harvs|txt|last=Lang|authorlink=Serge Lang|year=1997|loc1=pp. 43–67}}
2. ^{{harvs|txt|last1=Bombieri|last2=Gubler|authorlink1=Enrico Bombieri|year=2006|loc1=pp. 176–230}}
3. ^{{harvs|txt|last1=Vojta|authorlink=Paul Vojta|year=1987}}
4. ^{{harvs|txt|last1=Faltings|authorlink1=Gerd Faltings|year=1991}}
5. ^{{harvs|txt||last=Weil|authorlink=André Weil|year=1929}}
6. ^{{harvs|txt|last=Lang|authorlink=Serge Lang|year=1988}}
7. ^{{harvs|txt|last=Faltings|authorlink=Gerd Faltings|year=1983}}
8. ^{{harvs|txt|last1=Bombieri|last2=Gubler|authorlink1=Enrico Bombieri|year=2006|loc1=pp. 15–21}}
9. ^{{harvs|txt|last1=Baker | authorlink1=Alan Baker (mathematician)|last2= Wüstholz | authorlink2=Gisbert Wüstholz|year=2007|loc1=p. 3}}
10. ^{{harvs|txt|last=Silverman|authorlink=Joseph H. Silverman|year=1994|loc1=III.10}}
11. ^{{harvs|txt|last1=Bombieri|last2=Gubler|authorlink1=Enrico Bombieri|year=2006|loc1=Sections 2.2–2.4}}
12. ^{{harvs|txt|last1=Bombieri|last2=Gubler|authorlink1=Gerd Faltings|year=2006|loc1=pp. 66–67}}
13. ^{{harvs|txt|last=Lang|authorlink=Serge Lang|year=1988|loc1=pp. 156–157}}
14. ^{{harvs|txt|last1=Fili|last2=Petsche|last3=Pritsker|year=2017|loc1=p. 441}}
15. ^{{harvs|txt|last=Borwein|authorlink=Peter Borwein|year=2002}}
16. ^{{harvs|txt|last=Mahler|authorlink=Kurt Mahler|year=1963}}
  • {{Citation | last1=Baker | first1=Alan | authorlink = Alan Baker (mathematician) | title=Linear forms in the logarithms of algebraic numbers. I | doi=10.1112/S0025579300003971 | mr=0220680 | year=1966 | journal=Mathematika. A Journal of Pure and Applied Mathematics | issn=0025-5793 | volume=13 | pages=204–216}}
  • {{Citation | last1=Baker | first1=Alan | title=Linear forms in the logarithms of algebraic numbers. II | doi=10.1112/S0025579300008068 | mr=0220680 | year=1967a | journal=Mathematika. A Journal of Pure and Applied Mathematics | issn=0025-5793 | volume=14 | pages=102–107}}
  • {{Citation | last1=Baker | first1=Alan | title=Linear forms in the logarithms of algebraic numbers. III | doi=10.1112/S0025579300003843 | mr=0220680 | year=1967b | journal=Mathematika. A Journal of Pure and Applied Mathematics | issn=0025-5793 | volume=14 | pages=220–228}}
  • {{cite book | first1=Alan | last1=Baker | authorlink1=Alan Baker (mathematician)| first2=Gisbert | last2= Wüstholz | authorlink2=Gisbert Wüstholz | title=Logarithmic Forms and Diophantine Geometry | series=New Mathematical Monographs | volume=9 | publisher=Cambridge University Press | year=2007 | isbn=978-0-521-88268-2 | zbl=1145.11004 | page=3 }}
  • {{cite book | first1=Enrico | last1=Bombieri | authorlink1=Enrico Bombieri | first2=Walter | last2=Gubler | title=Heights in Diophantine Geometry | series=New Mathematical Monographs | volume=4 | publisher=Cambridge University Press | year=2006 | isbn=978-0-521-71229-3 | zbl=1130.11034 | doi=10.2277/0521846153 }}
  • {{cite book | first=Peter | last=Borwein | authorlink=Peter Borwein | title=Computational Excursions in Analysis and Number Theory | series=CMS Books in Mathematics | publisher=Springer-Verlag | year=2002 | isbn=0-387-95444-9 | zbl=1020.12001 | pages=2,3,142,148 }}
  • {{cite book |title=Arithmetic geometry |last=Cornell |first=Gary |author2=Silverman, Joseph H. |authorlink2=Joseph H. Silverman |year=1986 |publisher=Springer |location= New York |isbn=0387963111 |pages= }} → Contains an English translation of {{harvtxt|Faltings|1983}}
  • {{cite journal |last=Faltings |first=Gerd |year=1983 |title=Endlichkeitssätze für abelsche Varietäten über Zahlkörpern |journal=Inventiones Mathematicae |volume=73 |issue=3 |pages=349–366 |doi=10.1007/BF01388432 | mr=0718935 | trans-title=Finiteness theorems for abelian varieties over number fields | language=German | ref=harv}}
  • {{cite journal |last1=Faltings | first1=Gerd | author1link=Gerd Faltings | title=Diophantine approximation on abelian varieties | journal=Annals of Mathematics | mr=1109353| year=1991 | volume=123 | pages=549–576 | doi=10.2307/2944319 | issue=3 | ref=harv}}
  • {{cite journal|title=Energy integrals and small points for the Arakelov height|journal=Archiv der Mathematik|last1=Fili|first1=Paul|last2=Petsche|first2=Clayton|last3=Pritsker|first3=Igor|volume=109|issue=5|year=2017|pages=441–454}}
  • {{cite journal | first=K. | last=Mahler | authorlink=Kurt Mahler | title=On two extremum properties of polynomials | journal=Illinois J. Math. | volume=7 | pages=681–701 | year= 1963 | zbl=0117.04003 }}
  • {{cite book | last=Schinzel | first= Andrzej | authorlink=Andrzej Schinzel | title=Polynomials with special regard to reducibility | zbl=0956.12001 | series=Encyclopedia of Mathematics and Its Applications | volume=77 | location=Cambridge | publisher=Cambridge University Press | year=2000 | isbn=0-521-66225-7 | page=212 }}
  • {{cite journal | last1=Schmidt | first1=Wolfgang M. | authorlink=Wolfgang M. Schmidt | title=Norm form equations | mr=0314761 | year=1972 | journal=Annals of Mathematics |series=Second Series | volume=96 | pages=526–551 | issue=3 | doi=10.2307/1970824 | ref=harv}}
  • {{cite book | first=Serge | last=Lang | authorlink=Serge Lang | title=Introduction to Arakelov theory | publisher=Springer-Verlag | place=New York | year=1988 | isbn=0-387-96793-1 | mr=0969124 | zbl=0667.14001 }}
  • {{cite book | first=Serge | last=Lang | authorlink=Serge Lang | title=Survey of Diophantine Geometry | publisher=Springer-Verlag | year=1997 | isbn=3-540-61223-8 | zbl=0869.11051 }}
  • {{cite news|last=Weil|first=André|authorlink=André Weil|title=L'arithmétique sur les courbes algébriques|journal=Acta Mathematica|volume=52|year=1929|pages=281–315|issue=1|doi=10.1007/BF02592688|mr=1555278}}
  • {{cite book |title=Advanced Topics in the Arithmetic of Elliptic Curves |author=Silverman, Joseph H. |authorlink=Joseph H. Silverman |year=1994|publisher=Springer |location= New York |isbn=978-1-4612-0851-8}}
  • {{cite book | last1=Vojta | first1=Paul | author1link=Paul Vojta | title=Diophantine approximations and value distribution theory | publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Mathematics | isbn=978-3-540-17551-3 | doi=10.1007/BFb0072989 | zbl=0609.14011 | mr=883451 | year=1987 | volume=1239 | ref=harv}}

External links

  • Polynomial height at Mathworld

9 : Number theory|Polynomials|Abelian varieties|Elliptic curves|Diophantine geometry|Algebraic geometry|Algebraic number theory|Algebra|Abstract algebra

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 9:58:44