词条 | Heinz mean |
释义 |
In mathematics, the Heinz mean (named after E. Heinz[1]) of two non-negative real numbers A and B, was defined by Bhatia[2] as: with 0 ≤ x ≤ {{sfrac|1|2}}. For different values of x, this Heinz mean interpolates between the arithmetic (x = 0) and geometric (x = 1/2) means such that for 0 < x < {{sfrac|1|2}}: The Heinz mean may also be defined in the same way for positive semidefinite matrices, and satisfies a similar interpolation formula.[3][4] See also
References1. ^E. Heinz (1951), "Beiträge zur Störungstheorie der Spektralzerlegung", Math. Ann., 123, pp. 415–438. {{Mathapplied-stub}}2. ^{{citation|first=R.|last=Bhatia|title=Interpolating the arithmetic-geometric mean inequality and its operator version|journal=Linear Algebra and its Applications|volume=413|issue=2–3|pages=355–363|year=2006|doi=10.1016/j.laa.2005.03.005}}. 3. ^{{citation|first1=R.|last1=Bhatia|first2=C.|last2=Davis|authorlink2=Chandler Davis|title=More matrix forms of the arithmetic-geometric mean inequality|journal=SIAM Journal on Matrix Analysis and Applications|volume=14|issue=1|pages=132–136|year=1993|doi=10.1137/0614012}}. 4. ^{{citation|first=Koenraad M.R.|last=Audenaert|title=A singular value inequality for Heinz means|arxiv=math/0609130 |journal=Linear Algebra and its Applications|volume=422|issue=1|pages=279–283|year=2007|doi=10.1016/j.laa.2006.10.006}}. 1 : Means |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。