请输入您要查询的百科知识:

 

词条 Heteroclinic cycle
释义

  1. Robust heteroclinic cycles

  2. See also

  3. References

In mathematics, a heteroclinic cycle is an invariant set in the phase space of a dynamical system. It is a topological circle of equilibrium points and connecting heteroclinic orbits. If a heteroclinic cycle is asymptotically stable, approaching trajectories spend longer and longer periods of time in a neighbourhood of successive equilibria.

Robust heteroclinic cycles

A robust heteroclinic cycle is one which persists under small changes in the underlying dynamical system. Robust cycles often arise in the presence of symmetry or other constraints which force the existence of invariant hyperplanes. A prototypical example of a robust heteroclinic cycle is the Guckenheimer–Holmes cycle.

See also

  • Heteroclinic bifurcation
  • Heteroclinic network

References

  • Guckenheimer J and Holmes, P, 1988, Structurally Stable Heteroclinic Cycles, Math. Proc. Cam. Phil. Soc. 103: 189-192.

1 : Dynamical systems

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 12:50:49