请输入您要查询的百科知识:

 

词条 Closing (morphology)
释义

  1. Properties

  2. See also

  3. Bibliography

  4. External links

In mathematical morphology, the closing of a set (binary image) A by a structuring element B is the erosion of the dilation of that set,

where and denote the dilation and erosion, respectively.

In image processing, closing is, together with opening, the basic workhorse of morphological noise removal. Opening removes small objects, while closing removes small holes.

Properties

  • It is idempotent, that is, .
  • It is increasing, that is, if , then .
  • It is extensive, i.e., .
  • It is translation invariant.

See also

  • Mathematical morphology
  • Dilation
  • Erosion
  • Opening
  • Top-hat transformation

Bibliography

  • Image Analysis and Mathematical Morphology by Jean Serra, {{ISBN|0-12-637240-3}} (1982)
  • Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances by Jean Serra, {{ISBN|0-12-637241-1}} (1988)
  • An Introduction to Morphological Image Processing by Edward R. Dougherty, {{ISBN|0-8194-0845-X}} (1992)

External links

  • Introduction to mathematical morphology

2 : Mathematical morphology|Digital geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 23:12:02