词条 | Interactive visualization |
释义 |
Interactive visualization or interactive visualisation is a branch of graphic visualization in computer science that involves studying how humans interact with computers to create graphic illustrations of information and how this process can be made more efficient. For a visualization to be considered interactive it must satisfy two criteria:
One particular type of interactive visualization is virtual reality (VR), where the visual representation of information is presented using an immersive display device such as a stereo projector (see stereoscopy). VR is also characterized by the use of a spatial metaphor, where some aspect of the information is represented in three dimensions so that humans can explore the information as if it were present (where instead it was remote), sized appropriately (where instead it was on a much smaller or larger scale than humans can sense directly), or had shape (where instead it might be completely abstract). Another type of interactive visualization is collaborative visualization, in which multiple people interact with the same computer visualization to communicate their ideas to each other or to explore information cooperatively. Frequently, collaborative visualization is used when people are physically separated. Using several networked computers, the same visualization can be presented to each person simultaneously. The people then make annotations to the visualization as well as communicate via audio (i.e., telephone), video (i.e., a video-conference), or text (i.e., IRC) messages. Human control of visualizationThe Programmer's Hierarchical Interactive Graphics System (PHIGS) was one of the first programmatic efforts at interactive visualization and provided an enumeration of the types of input humans provide. People can:
All of these actions require a physical device. Input devices range from the common – keyboards, mice, graphics tablets, trackballs, and touchpads – to the esoteric – wired gloves, boom arms, and even omnidirectional treadmills. These input actions can be used to control both the information being represented or the way that the information is presented. When the information being presented is altered, the visualization is usually part of a feedback loop. For example, consider an aircraft avionics system where the pilot inputs roll, pitch, and yaw and the visualization system provides a rendering of the aircraft's new attitude. Another example would be a scientist who changes a simulation while it is running in response to a visualization (see Visulation) of its current progress. This is called computational steering. More frequently, the representation of the information is changed rather than the information itself (see Visualization (graphic)). Rapid response to human inputExperiments have shown that a delay of more than 20 ms between when input is provided and a visual representation is updated is noticeable by most people {{Citation needed|date=May 2015}}. Thus it is desirable for an interactive visualization to provide a rendering based on human input within this time frame. However, when large amounts of data must be processed to create a visualization, this becomes hard or even impossible with current technology. Thus the term “interactive visualization” is usually applied to systems that provide feedback to users within several seconds of input. The term interactive framerate is often used to measure how interactive a visualization is. Framerates measure the frequency with which an image (a frame) can be generated by a visualization system. A framerate of 50 frames per second (frame/s) is considered good while 0.1 frame/s would be considered poor. The use of framerates to characterize interactivity is slightly misleading however, since framerate is a measure of bandwidth while humans are more sensitive to latency. Specifically, it is possible to achieve a good framerate of 50 frame/s but if the images generated refer to changes to the visualization that a person made more than 1 second ago, it will not feel interactive to a person. The rapid response time required for interactive visualization is a difficult constraint to meet and there are several approaches that have been explored to provide people with rapid visual feedback based on their input. Some include
See also
References{{Empty section|date=February 2013}}External linksMany conferences occur where interactive visualization academic papers are presented and published.
3 : Multimodal interaction|Visualization (graphic)|Earth sciences graphics software |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。