词条 | Complex Lie group |
释义 |
In geometry, a complex Lie group is a complex-analytic manifold that is also a group in such a way is holomorphic. Basic examples are , the general linear groups over the complex numbers. A connected compact complex Lie group is precisely a complex torus (not to be confused with the complex Lie group ). Any finite group may be given the structure of a complex Lie group. A complex semisimple Lie group is an algebraic group. Examples{{see also|Table of Lie groups}}
References1. ^{{cite journal|last1=Guillemin|first1=Victor|last2=Sternberg|first2=Shlomo|title=Geometric quantization and multiplicities of group representations|journal=Inventiones Mathematicae|date=1982|volume=67|issue=3|pages=515–538|doi=10.1007/bf01398934}}
| last = Lee | first = Dong Hoon | isbn = 1-58488-261-1 | mr = 1887930 | publisher = Chapman & Hall/CRC | location = Boca Raton, Florida | title = The Structure of Complex Lie Groups | url = http://cs5517.userapi.com/u133638729/docs/55b6923279e2/c2611apb.pdf | year = 2002}}
2 : Lie groups|Manifolds |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。