请输入您要查询的百科知识:

 

词条 Computable isomorphism
释义

  1. References

In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem,[1] the relation of computable isomorphism coincides with the relation of one-one reduction.

Two numberings and are called computably isomorphic if there exists a computable bijection so that

Computably isomorphic numberings induce the same notion of computability on a set.

References

1. ^Theorem 7.VI, Hartley Rogers, Jr., Theory of recursive functions and effective computability
  • {{citation

| last = Rogers | first = Hartley, Jr. | author-link = Hartley Rogers, Jr.
| edition = 2nd
| isbn = 0-262-68052-1
| location = Cambridge, MA
| mr = 886890
| publisher = MIT Press
| title = Theory of recursive functions and effective computability
| year = 1987}}.{{DEFAULTSORT:Computable Isomorphism}}{{comp-sci-theory-stub}}{{mathlogic-stub}}

1 : Reduction (complexity)

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 23:52:36