请输入您要查询的百科知识:

 

词条 Conjunction introduction
释义

  1. Formal notation

  2. References

{{Transformation rules}}

Conjunction introduction (often abbreviated simply as conjunction and also called and introduction)[1][2][3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof. It is the inference that if the proposition p is true, and proposition q is true, then the logical conjunction of the two propositions p and q is true. For example, if it's true that it's raining, and it's true that I'm inside, then it's true that "it's raining and I'm inside". The rule can be stated:

where the rule is that wherever an instance of "" and "" appear on lines of a proof, a "" can be placed on a subsequent line.

Formal notation

The conjunction introduction rule may be written in sequent notation:

where is a metalogical symbol meaning that is a syntactic consequence if and are each on lines of a proof in some logical system;

where and are propositions expressed in some formal system.

References

1. ^{{cite book |title=A Concise Introduction to Logic 4th edition |last=Hurley |first=Patrick |authorlink= |coauthors= |year=1991 |publisher=Wadsworth Publishing |location= |isbn= |page= |pages=346–51 |url= |accessdate=}}
2. ^Copi and Cohen
3. ^Moore and Parker
{{DEFAULTSORT:Conjunction Introduction}}

2 : Rules of inference|Theorems in propositional logic

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 12:53:21