请输入您要查询的百科知识:

 

词条 John ellipsoid
释义

  1. Applications

  2. See also

  3. References

In mathematics, the John ellipsoid or Löwner-John ellipsoid E(K) associated to a convex body K in n-dimensional Euclidean space Rn is the ellipsoid of maximal n-dimensional volume contained within K. The John ellipsoid is named after the German-American mathematician Fritz John.

In 1948, Fritz John proved[1] that each convex body in Rn contains a unique ellipsoid of maximal volume. Thus, each convex body has an affine image whose ellipsoid of maximal

volume is the Euclidean unit ball. He also gave necessary and sufficient conditions for this ellipsoid to be a ball.

The following refinement of John's original theorem, due to Keith Ball,[2] gives necessary and sufficient conditions for the John ellipsoid of K to be a closed unit ball B in Rn:

The John ellipsoid E(K) of a convex body K ⊂ Rn is B if and only if B ⊆ K and there exists an integer m ≥ n and, for i = 1, ..., m, real numbers ci > 0 and unit vectors ui ∈ Sn−1 ∩ ∂K such that

and, for all x ∈ Rn

A useful fact is that the dilation by factor of a John ellipsoid contains the convex body[1].

Applications

  • Obstacle Collision Detection [3]
  • Portfolio Policy Approximation [4]

See also

  • Steiner inellipse, the special case of the John ellipsoid for a triangle.
  • Fat object, related to radius of largest contained ball.

References

1. ^John, Fritz. "Extremum problems with inequalities as subsidiary conditions". Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187—204. Interscience Publishers, Inc., New York, N. Y., 1948. {{oclc|1871554}} {{MR|30135}}
2. ^{{cite journal| last = Ball| first = Keith M.| title = Ellipsoids of maximal volume in convex bodies| journal = Geom. Dedicata| volume = 41| year = 1992| issue = 2| pages = 241–250| issn = 0046-5755| doi = 10.1007/BF00182424|arxiv = math/9201217}}
3. ^{{cite journal|last1=Rimon|first1=Elon|last2=Boyd|first2=Stephen|title=Obstacle Collision Detection Using Best Ellipsoid Fit|journal=Journal of Intelligent and Robotic Systems|volume=18|issue=2|pages=105–126|doi=10.1023/A:1007960531949|year=1997}}
4. ^{{cite journal|last1=Shen|first1=Weiwei|last2=Wang|first2=Jun|title=Transaction costs-aware portfolio optimization via fast Löwner-John ellipsoid approximation|journal=Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI2015)|year=2015|pages=1854–1860|url=https://pdfs.semanticscholar.org/7b31/2141616f092137c12397a47d11d94ddcea78.pdf}}
  • {{cite journal

| last=Gardner
| first=Richard J.
| title=The Brunn-Minkowski inequality
| journal=Bull. Amer. Math. Soc. (N.S.)
| volume=39
| issue=3
| year=2002
| pages=355–405 (electronic)
| issn = 0273-0979
| doi=10.1090/S0273-0979-02-00941-2
}}{{geometry-stub}}

2 : Convex geometry|Multi-dimensional geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 20:58:55