词条 | Johnson bound |
释义 |
In applied mathematics, the Johnson bound (named after Selmer Martin Johnson) is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications. DefinitionLet be a q-ary code of length , i.e. a subset of . Let be the minimum distance of , i.e. where is the Hamming distance between and . Let be the set of all q-ary codes with length and minimum distance and let denote the set of codes in such that every element has exactly nonzero entries. Denote by the number of elements in . Then, we define to be the largest size of a code with length and minimum distance : Similarly, we define to be the largest size of a code in : Theorem 1 (Johnson bound for ):If , If , Theorem 2 (Johnson bound for ):(i) If(ii) If , then define the variable as follows. If is even, then define through the relation ; if is odd, define through the relation . Let . Then, where is the floor function. Remark: Plugging the bound of Theorem 2 into the bound of Theorem 1 produces a numerical upper bound on . See also
References
1 : Coding theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。