词条 | Kelvin transform |
释义 |
This article is about a type of transform used in classical potential theory, a topic in mathematics. The Kelvin transform is a device used in classical potential theory to extend the concept of a harmonic function, by allowing the definition of a function which is 'harmonic at infinity'. This technique is also used in the study of subharmonic and superharmonic functions. In order to define the Kelvin transform f* of a function f, it is necessary to first consider the concept of inversion in a sphere in Rn as follows. It is possible to use inversion in any sphere, but the ideas are clearest when considering a sphere with centre at the origin. Given a fixed sphere S(0,R) with centre 0 and radius R, the inversion of a point x in Rn is defined to be A useful effect of this inversion is that the origin 0 is the image of , and is the image of 0. Under this inversion, spheres are transformed into spheres, and the exterior of a sphere is transformed to the interior, and vice versa. The Kelvin transform of a function is then defined by: If D is an open subset of Rn which does not contain 0, then for any function f defined on D, the Kelvin transform f* of f with respect to the sphere S(0,R) is One of the important properties of the Kelvin transform, and the main reason behind its creation, is the following result: Let D be an open subset in Rn which does not contain the origin 0. Then a function u is harmonic, subharmonic or superharmonic in D if and only if the Kelvin transform u* with respect to the sphere S(0,R) is harmonic, subharmonic or superharmonic in D*. This follows from the formula See also
References
3 : Harmonic functions|Transforms|William Thomson, 1st Baron Kelvin |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。