释义 |
- Examples
- Literature
In number theory, an n-Knödel number for a given positive integer n is a composite number m with the property that each i < m coprime to m satisfies . The concept is named after Walter Knödel. The set of all n-Knödel numbers is denoted Kn. The special case K1 represents the Carmichael numbers. Every composite number m is a n-Knödel number for . Examples n | Kn | 1 | {561, 1105, 1729, 2465, 2821, 6601, ... } | id=A002997}} | 2 | {4, 6, 8, 10, 12, 14, 22, 24, 26, ... } | id=A050990}} | 3 | {9, 15, 21, 33, 39, 51, 57, 63, 69, ... } | id=A033553}} | 4 | {6, 8, 12, 16, 20, 24, 28, 40, 44, ... } | id= A050992}} |
Literature - {{cite book |title=Generalization of Morrow's D-Numbers |last=Makowski |first=A |year=1963 |page=71}}
- {{cite book |title=The New Book of Prime Number Records |last=Ribenboim |first=Paulo |authorlink=Paulo Ribenboim |year=1989 |publisher=Springer-Verlag |location=New York |isbn=978-0-387-94457-9 |page=101}}
- {{mathworld|title=Knödel Numbers|urlname=KnoedelNumbers}}
{{Classes of natural numbers}}{{DEFAULTSORT:Knodel Number}}{{numtheory-stub}} 1 : Number theory |