词条 | Krull's theorem |
释义 |
In mathematics, and more specifically in ring theory, Krull's theorem, named after Wolfgang Krull, asserts that a nonzero ring[1] has at least one maximal ideal. The theorem was proved in 1929 by Krull, who used transfinite induction. The theorem admits a simple proof using Zorn's lemma, and in fact is equivalent to Zorn's lemma, which in turn is equivalent to the axiom of choice. Variants
Let R be a ring, and let I be a proper ideal of R. Then there is a maximal ideal of R containing I. This result implies the original theorem, by taking I to be the zero ideal (0). Conversely, applying the original theorem to R/I leads to this result. To prove the stronger result directly, consider the set S of all proper ideals of R containing I. The set S is nonempty since I ∈ S. Furthermore, for any chain T of S, the union of the ideals in T is an ideal J, and a union of ideals not containing 1 does not contain 1, so J ∈ S. By Zorn's lemma, S has a maximal element M. This M is a maximal ideal containing I. Krull's Hauptidealsatz{{main|Krull's principal ideal theorem}}Another theorem commonly referred to as Krull's theorem: Let be a Noetherian ring and an element of which is neither a zero divisor nor a unit. Then every minimal prime ideal containing has height 1. Notes1. ^In this article, rings have a 1. References
1 : Ideals |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。