词条 | Kulinkovich reaction |
释义 |
The Kulinkovich reaction describes the organic synthesis of cyclopropanols via reaction of esters with dialkyldialkoxytitanium reagents, generated in situ from Grignard reagents bearing hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was discovered by Oleg Kulinkovich and coworkers in 1989.[1][2][3][4][5][6][7][8] The titanium reagent can be used catalytically. Titanium catalysts are ClTi(OiPr)3 or Ti(OiPr)4, ClTi(OtBu)3 or Ti(OtBu)4, Grignard reagents are EtMgX, PrMgX or BuMgX. Solvents can be Et2O, THF, Toluol. Tolerated Functional Groups: Ethers R–O–R, R–S–R, Imines RN=CHR. Amides, primary and secondary amines, most carbamates are not stable to the reaction conditions, but tert-butyl carbamates (N-Boc derivatives) survive the transformation. An asymmetric version of this reaction is also known with a TADDOL-based catalyst.[9] Reaction mechanismThe generally accepted reaction mechanism initially utilizes two successive stages of transmetallation of the committed Grignard reagent, leading to an intermediate dialkyldiisopropyloxytitanium complex. This complex undergoes a dismutation to give an alkane molecule and a titanacyclopropane 1. The insertion of the carbonyl group of the ester in the weakest carbon-titanium bond leads to an oxatitanacyclopentane 2 being rearranged to ketone 3. Lastly, the insertion of the carbonyl group of 3 in the residual carbon-titanium connection forms a cyclopropane ring. In the transition state of this elementary stage, which is the limiting stage of the reaction, an agostic interaction stabilizing between the beta hydrogen and the R2 group and the titanium atom was called upon to explain the diastereoselectivity observed. Complex 4 obtained is a tetraalkyloxytitanium compound able to play a part similar to that of the starting tetraisopropyloxytitanate, which closes the catalytic cycle. At the end of the reaction, the product is mainly in the shape of the magnesium alcoholate 5, giving the cyclopropanol after hydrolysis by the reaction medium. The reaction mechanism of the Kulinkovich reaction was the subject of thorough calculations published in 2001.[10] Certain points remain nevertheless obscure and the mechanism of this reaction is actually not so simple. Intermediate titanium complexes of the ate type were recently proposed by Kulinkovich.[11] Ligand exchange with olefinsIn 1993, the team of Kulinkovich highlighted the aptitude of the titanacyclopropanes to undergo ligand exchange with olefins.[12] This discovery was important, because it gave access to cyclopropanols more functionalized by making economic use of the Grignard of which normally at least two equivalents should have been engaged to obtain good outputs. Cha and its team introduced the use of cyclic Grignard reagents, particularly adapted for these reactions.[13] The methodology has been extended to intramolecular reactions[14] de Meijere variationWith amides instead of esters the reaction product is an aminocyclopropane in the de Meijere variation[15][16] The intramolecular reaction is also known:[17][18][19][20][21][22][23][24][25][26] Szymoniak variationIn the Szymoniak variation the substrate is a nitrile and the reaction product a cyclopropane with a primary amine group.[27][28] The reaction mechanism is akin the Kulinkovich reaction: References1. ^{{cite journal|author1=Kulinkovich, O. G. |author2=Sviridov, S. V. |author3=Vasilevskii, D. A. |author4=Pritytskaya, T. S. |journal= Zh. Org. Khim.|year=1989|volume= 25|pages= 2244}} {{DEFAULTSORT:Kulinkovich Reaction}}2. ^{{Cite journal | last1 = Kulinkovich | first1 = O. G. | last2 = Sviridov | first2 = S. V. | last3 = Vasilevski | first3 = D. A. | doi = 10.1055/s-1991-26431 | title = Titanium(IV) Isopropoxide-Catalyzed Formation of 1-Substituted Cyclopropanols in the Reaction of Ethylmagnesium Bromide with Methyl Alkanecarboxylates | journal = Synthesis | volume = 1991 | issue = 3 | pages = 234 | year = 1991 | pmid = | pmc = }} 3. ^{{cite journal|author1=Kulinkovich, O. G. |author2=de Meijere, A. |journal=Chem. Rev.|year=2000|volume= 100|pages= 2789–834|doi=10.1021/cr980046z|pmid=11749306|title=1,n-Dicarbanionic Titanium Intermediates from Monocarbanionic Organometallics and Their Application in Organic Synthesis|issue=8}} 4. ^{{cite journal|author1=Sato, F. |author2=Urabe, H. |author3=Okamoto, S. |journal=Chem. Rev. |year=2000|volume= 100|pages= 2835–86|doi=10.1021/cr990277l|pmid=11749307|title=Synthesis of organotitanium complexes from alkenes and alkynes and their synthetic applications|issue=8}} 5. ^{{cite journal|author1=Wu, Y.-D. |author2=Yu, Z.-X. |journal=J. Am. Chem. Soc.|year=2001|volume= 123|pages= 5777–86|doi=10.1021/ja010114q |pmid=11403612|title=A theoretical study on the mechanism and diastereoselectivity of the Kulinkovich hydroxycyclopropanation reaction|issue=24}} 6. ^{{cite journal|author=Kulinkovich, O. G. |journal=Russ. Chem. Bull.|volume= 5 |year=2004|pages=1022–1043}} 7. ^{{cite journal|author1=Wolan, A. |author2=Six, Y. |journal=Tetrahedron|year=2010|volume=66|pages= 15–61|doi=10.1016/j.tet.2009.10.050|title=Synthetic transformations mediated by the combination of titanium(IV) alkoxides and grignard reagents: Selectivity issues and recent applications. Part 1: Reactions of carbonyl derivatives and nitriles}} 8. ^{{cite journal|author1=Wolan, A. |author2=Six, Y. |journal=Tetrahedron|year=2010|volume=66|pages= 3097–3133|doi=10.1016/j.tet.2010.01.079|title=Synthetic transformations mediated by the combination of titanium(IV) alkoxides and Grignard reagents: Selectivity issues and recent applications. Part 2: Reactions of alkenes, allenes and alkynes|issue=17}} 9. ^{{Cite journal | last1 = Corey | first1 = E. J. | last2 = Rao | first2 = S. A. | last3 = Noe | first3 = M. C. | doi = 10.1021/ja00099a068 | title = Catalytic Diastereoselective Synthesis of Cis-1,2-Disubstituted Cyclopropanols from Esters Using a Vicinal Dicarbanion Equivalent | journal = Journal of the American Chemical Society | volume = 116 | issue = 20 | pages = 9345 | year = 1994 | pmid = | pmc = }} 10. ^{{cite journal|author=Wu, Y.–D. and Yu, Z.-X. |journal= J. Am. Chem. Soc.|year=2001|volume= 123|pages= 5777–86|doi=10.1021/ja010114q|pmid=11403612|title=A theoretical study on the mechanism and diastereoselectivity of the Kulinkovich hydroxycyclopropanation reaction|issue=24}} 11. ^{{cite journal|author1=Kulinkovich, O. G. |author2=Kananovich, D. G. |journal=Eur. J. Org. Chem.|year=2007|pages= 2121–32|doi=10.1002/ejoc.200601035|title=Advanced Procedure for the Preparation ofcis-1,2-Dialkylcyclopropanols – Modified Ate Complex Mechanism for Titanium-Mediated Cyclopropanation of Carboxylic Esters with Grignard Reagents|volume=2007|issue=13}} 12. ^{{cite journal|author1=Kulinkovich, O. G. |author2=Savchenko, A. I. |author3=Sviridov, S. V. |author4=Vasilevski, D. A. |journal=Mendeleev Commun.|year=1993|pages= 230–31|doi=10.1070/MC1993v003n06ABEH000304|title=Titanium(IV) Isopropoxide-catalysed Reaction of Ethylmagnesium Bromide with Ethyl Acetate in the Presence of Styrene|volume=3|issue=6}} 13. ^{{cite journal|author1=Lee, J. |author2=Kim, H. |author3=Cha, J. K. |journal=J. Am. Chem. Soc.|year=1996|volume= 118|pages= 4198–99|doi=10.1021/ja954147f|title=A New Variant of the Kulinkovich Hydroxycyclopropanation. Reductive Coupling of Carboxylic Esters with Terminal Olefins|issue=17}} 14. ^{{cite journal|author1=Kasatkin, A. |author2=Sato, F. |journal=Tetrahedron Lett.|year=1995|volume= 36|pages= 6079–82|doi=10.1016/0040-4039(95)01208-Y|title=Diastereoselective synthesis of trans-1,2-disubstituted cyclopropanols from homoallyl or bis-homoallyl esters via tandem intramolecular nucleophilic acyl substitution and intramolecular carbonyl addition reactions mediated by Ti(OPr-i)4 / 2 i-PrMgBr reagent|issue=34}} 15. ^{{cite journal|author1=Chaplinski, V. |author2=de Meijere, A. |journal=Angew. Chem. Int. Ed. |year=1996|volume= 35|pages= 413–14|doi=10.1002/anie.199604131|title=A Versatile New Preparation of Cyclopropylamines from Acid Dialkylamides|issue=4}} 16. ^de Meijere, A.; Winsel, H. and Stecker, B. Organic Syntheses, Vol. 81, p. 14 17. ^{{Cite journal | last1 = Lee | first1 = J. | last2 = Cha | first2 = J. K. | doi = 10.1021/jo962368d | title = Facile Preparation of Cyclopropylamines from Carboxamides | journal = The Journal of Organic Chemistry | volume = 62 | issue = 6 | pages = 1584 | year = 1997 | pmid = | pmc = }} 18. ^{{Cite journal | last1 = Chaplinski | first1 = V. | last2 = Winsel | first2 = H. | last3 = Kordes | first3 = M. | last4 = De Meijere | first4 = A. | title = A New Versatile Reagent for the Synthesis of Cyclopropylamines Including 4-Azaspiro[2.n]alkanes and Bicyclo[n.1.0]alkylamines| doi = 10.1055/s-1997-17828 | journal = Synlett | volume = 1997 | pages = 111 | year = 1997 | pmid = | pmc = }} 19. ^{{Cite journal | last1 = Cao | first1 = B. | last2 = Xiao | first2 = D. | last3 = Joullié | first3 = M. M. | doi = 10.1021/ol9910520 | title = Synthesis of Bicyclic Cyclopropylamines by Intramolecular Cyclopropanation of N-Allylamino Acid Dimethylamides| journal = Organic Letters | volume = 1 | issue = 11 | pages = 1799 | year = 1999 }} 20. ^{{Cite journal | last1 = Lee | first1 = H. B. | last2 = Sung | first2 = M. J. | last3 = Blackstock | first3 = S. C. | last4 = Cha | first4 = J. K. | title = Radical cation-mediated annulation. Stereoselective construction of bicyclo[5.3.0]decan-3-ones by aerobic oxidation of cyclopropylamines| doi = 10.1021/ja017043f | journal = Journal of the American Chemical Society | volume = 123 | issue = 45 | pages = 11322–11324 | year = 2001 | pmid = 11697988| pmc = }} 21. ^{{Cite journal | last1 = Gensini | first1 = M. | last2 = Kozhushkov | first2 = S. I. | last3 = Yufit | first3 = D. S. | last4 = Howard | first4 = J. A. K. | last5 = Es-Sayed | first5 = M. | last6 = Meijere | first6 = A. D. | doi = 10.1002/1099-0690(200208)2002:15<2499::AID-EJOC2499>3.0.CO;2-V | title = 3-Azabicyclo[3.1.0]hex-1-ylamines by Ti-Mediated Intramolecular Reductive Cyclopropanation of α-(N-Allylamino)-Substituted N,N-Dialkylcarboxamides and Carbonitriles| journal = European Journal of Organic Chemistry | volume = 2002 | issue = 15 | pages = 2499 | year = 2002 | pmid = | pmc = }} 22. ^{{Cite journal | last1 = Tebben | first1 = G. D. | last2 = Rauch | first2 = K. | last3 = Stratmann | first3 = C. | last4 = Williams | first4 = C. M. | last5 = De Meijere | first5 = A. | title = Intramolecular Titanium-Mediated Aminocyclopropanation of Terminal Alkenes: Easy Access to Various Substituted Azabicyclo[n.1.0]alkanes1| doi = 10.1021/ol027352q | journal = Organic Letters | volume = 5 | issue = 4 | pages = 483–485 | year = 2003 | pmid = 12583749| pmc = }} 23. ^{{Cite journal | last1 = Ouhamou | first1 = N. | last2 = Six | first2 = Y. | doi = 10.1039/b306719j | title = Studies on the intramolecular Kulinkovich?de Meijere reaction of disubstituted alkenes bearing carboxylic amide groups | journal = Organic & Biomolecular Chemistry | volume = 1 | issue = 17 | pages = 3007 | year = 2003 | pmid = | pmc = }} 24. ^{{Cite journal | last1 = Gensini | first1 = M. | last2 = De Meijere | first2 = A. | doi = 10.1002/chem.200305068 | title = Cyclopropane-Annelated Azaoligoheterocycles by Ti-Mediated Intramolecular Reductive Cyclopropanation of Cyclic Amino Acid Amides | journal = Chemistry: A European Journal | volume = 10 | issue = 3 | pages = 785 | year = 2004 | pmid = | pmc = }} 25. ^{{Cite journal | last1 = Larquetoux | first1 = L. | last2 = Kowalska | first2 = J. A. | last3 = Six | first3 = Y. | doi = 10.1002/ejoc.200400291 | title = The Formal [3+2+1] Cyclisation of Cyclopropylamines with Carboxylic Anhydrides: A Quick Access to Polysubstituted 2,3,3a,4-Tetrahydro6(5H)-indolone Ring Systems| journal = European Journal of Organic Chemistry | volume = 2004 | issue = 16 | pages = 3517 | year = 2004 | pmid = | pmc = }} 26. ^{{Cite journal | last1 = Larquetoux | first1 = L. | last2 = Ouhamou | first2 = N. | last3 = Chiaroni | first3 = A. L. | last4 = Six | first4 = Y. | title = The Intramolecular Aromatic Electrophilic Substitution of Aminocyclopropanes Prepared by the Kulinkovich-de Meijere Reaction | doi = 10.1002/ejoc.200500428 | journal = European Journal of Organic Chemistry | volume = 2005 | issue = 21 | pages = 4654 | year = 2005 | pmid = | pmc = }} 27. ^{{Cite journal | last1 = Bertus | first1 = P. | last2 = Szymoniak | first2 = J. | doi = 10.1039/b105293b | title = New and easy route to primary cyclopropylamines from nitriles | journal = Chemical Communications | issue = 18 | pages = 1792 | year = 2001 | pmid = | pmc = }} 28. ^{{Cite journal | last1 = Chaplinski | first1 = V. | last2 = De Meijere | first2 = A. | doi = 10.1002/anie.199604131 | title = A Versatile New Preparation of Cyclopropylamines from Acid Dialkylamides | journal = Angewandte Chemie International Edition in English | volume = 35 | issue = 4 | pages = 413 | year = 1996 | pmid = | pmc = }} 3 : Carbon-carbon bond forming reactions|Titanium|Name reactions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。