请输入您要查询的百科知识:

 

词条 Laboratori Nazionali del Gran Sasso
释义

  1. Facilities

  2. Research projects

     Neutrino research  Experiments 

  3. See also

  4. References

  5. External links

{{other uses of|Gran Sasso}}{{Infobox Laboratory
| name = Laboratori Nazionali del Gran Sasso
| motto =
| image = INFN_LNGS_2014-02_(TQB1).JPG
| image_size = 246px
| caption = Overview of overground laboratories of LNGS
| established = 1985
| director = Lucia Votano; Stefano Ragazzi (since October 2012)
| city = L'Aquila
| province = Abruzzo
| country = Italy
| coor = {{coord|42.454|13.576|region:IT-65_type:mountain_source:ETRF2000(X4582167.465,Y1106521.805,Z4283602.714)|display=it}}[1]
| budget =
| type = Particle physics, nuclear physics
| staff =
| campus =
| operating_agency = INFN
| website = [https://web.archive.org/web/20040715081230/http://www.lngs.infn.it/ www.lngs.infn.it]
}}{{Beyond the Standard Model|expanded=Experiments}}

Laboratori Nazionali del Gran Sasso (LNGS) is the largest underground research center in the world. Situated below Gran Sasso mountain in Italy, it is well known for particle physics research by the INFN. In addition to a surface portion of the laboratory, there are extensive underground facilities beneath the mountain. The nearest towns are L'Aquila and Teramo. The facility is located about 120 km from Rome.

The primary mission of the laboratory is to host experiments that require a low background environment in the fields of astroparticle physics and nuclear astrophysics and other disciplines that can profit of its characteristics and of its infrastructures.

The LNGS is, like the three other European underground astroparticle laboratories, Laboratoire Souterrain de Modane, Laboratorio subterráneo de Canfranc, and Boulby Underground Laboratory, a member of the coordinating group ILIAS.

Facilities

The laboratory consists of a surface facility, located within the Gran Sasso and Monti della Laga National Park, and extensive underground facilities located next to the 10 km long Traforo del Gran Sasso freeway tunnel.

The first large experiments at LNGS ran in 1989; the facilities were later expanded, and it is now the largest underground laboratory in the world.[2]

There are three main barrel vaulted experimental halls, each approximately 20 m wide, 18 m tall, and 100 m long.[2] These provide roughly 3×20×100={{convert|{{#expr:3*20*100}}|m2|ft2|abbr=on}} of floor space and 3×20×(8+10×π/4)×100={{convert|{{#expr:3*20*(8+10*pi/4)*100 round-2}}|m3|ft3|abbr=on}} of volume. Including smaller spaces and various connecting tunnels, the facility totals {{convert|17800|m2|ft2|abbr=on}} and {{convert|180000|m3|ft3|abbr=on}}.[2][3]

The experimental halls are covered by about 1400 m of rock, protecting the experiments from cosmic rays. Providing about 3400 metres of water equivalent (mwe) shielding, it is not the deepest underground laboratory, but the fact that it can be driven to without using mine elevators makes it very popular.

Research projects

Neutrino research

Since late August 2006, CERN has directed a beam of muon neutrinos from the CERN SPS accelerator to the Gran Sasso lab, 730 km away, where they are detected by the OPERA and ICARUS detectors, in a study of neutrino oscillations that will improve on the results of the Fermilab to MINOS experiment.

In May 2010, Lucia Votano, Director of the Gran Sasso laboratories, announced that "[t]he OPERA experiment has reached its first goal: the detection of a tau neutrino obtained from the transformation of a muon neutrino, which occurred during the journey from Geneva to the Gran Sasso Laboratory."[4] This finding indicates a deficiency in the Standard Model of particle physics, as neutrinos would have to have mass for this change to occur.

An effort to determine the Majorana/Dirac nature of the neutrino, called CUORE (Cryogenic Underground Observatory for Rare Events), is operating in the laboratory (as of 2018). The detector is be shielded with lead recovered from an ancient Roman shipwreck, due to the ancient lead's lower radioactivity than recently minted lead. The artifacts were given to CUORE from the National Archaeological Museum in Cagliari.[5]

In September 2011, Dario Autiero of the OPERA collaboration presented findings that indicated neutrinos were arriving at OPERA about 60 ns earlier than they would if they were travelling at the speed of light. This Faster-than-light neutrino anomaly was not immediately explained.[6][7] The results were subsequently investigated and confirmed to be wrong. They were caused by a flawed optic fiber cable in OPERA receiver of the laboratory,[8] resulting in late arrival of the clock signal to which the neutrinos' arrivals were compared.

In 2014 Borexino measured directly, for the first time, the neutrinos from the primary proton-proton fusion process in the Sun. This result is published on Nature. This measurement is consistent with the expectations derived from the standard solar model of J. Bahcall along with the theory of solar neutrino oscillations as described by MSW theory. It can be regarded as a cornerstone for our understanding of the PP-chain that fuels our Sun.

Experiments

{{columns-list|colwidth=22em|
  • BOREXINO
  • COBRA
  • CRESST
  • CUORE/Cuoricino
  • DAMA/NaI
  • GALLEX
  • GNO
  • LVD
  • MACRO (finished)
  • OPERA
  • XENON

}}

See also

  • Astroparticle physics
  • Fazia

References

1. ^{{Citation |title=Determination of the CNGS global geodesy |page=6 |url=http://operaweb.lngs.infn.it:2080/Opera/publicnotes/note132.pdf |id=OPERA public note 132 v3 |date=14 April 2012 |first1=Gabriele |last1=Colosimo |first2=Mattia |last2=Crespi |first3=Augusto |last3=Mazzoni |first4=Federica |last4=Riguzzi |first5=Mark |last5=Jones |first6=Dominique |last6=Missiaen}}
2. ^{{Cite journal |arxiv=hep-ex/0503054 |title=European underground laboratories: An overview |first=Lino |last=Miramonti |date=31 March 2005 |doi=10.1063/1.2060447 |journal=AIP Conference Proceedings|volume=785 |pages=3–11 |bibcode=2005AIPC..785....3M }}
3. ^{{Cite web |url=https://www.lngs.infn.it/images/REIS/Annual_Report/annual_report_2011.pdf |title=INFN Laboratori Nazionali del Gran Sasso Annual Report 2011 |accessdate=2015-08-16 |page=4}}
4. ^Particle Chameleon Caught in the act of Changing, Press Release, CERN, 31 May 2010, accessed 22 November 2016.
5. ^Roman ingots to shield particle detector, Nature, 15 April 2010.
6. ^Particles break light-speed limit, Nature, 22 September 2011.
7. ^{{cite journal |last1=Adam |first1=T. |author2=et al. (OPERA Collaboration) |date=2012 |title=Measurement of the neutrino velocity with the OPERA detector in the CNGS beam |journal=Journal of High Energy Physics |volume=2012 | issue= 10|pages=93 |arxiv=1109.4897 |bibcode=2012JHEP...10..093A |doi=10.1007/JHEP10(2012)093}}
8. ^Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit, 8 June 2012.

External links

{{commons category}}
  • [https://web.archive.org/web/20040715081230/http://www.lngs.infn.it/ Gran Sasso National Laboratory]
  • CNGS - CERN neutrino to Gran Sasso
  • Slide Show
  • ILIAS
{{Use dmy dates|date=October 2010}}{{Underground laboratories}}{{neutrino detectors}}{{Standard model of physics}}{{Dark matter}}{{Authority control}}{{DEFAULTSORT:Laboratori Nazionali Del Gran Sasso}}

8 : Neutrino observatories|Underground laboratories|Research institutes in Italy|Physics laboratories|Physics beyond the Standard Model|Laboratories in Italy|Buildings and structures in L'Aquila|1989 establishments in Italy

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 8:45:46