请输入您要查询的百科知识:

 

词条 Linkwitz–Riley filter
释义

  1. Common types

     Second order Linkwitz–Riley crossover (LR2, LR-2)  Fourth order Linkwitz–Riley crossover (LR4, LR-4)  Eighth order Linkwitz–Riley crossover (LR8, LR-8) 

  2. See also

  3. References

{{Linear analog electronic filter|filter2=hide|filter3=hide}}

A Linkwitz–Riley (L-R) filter is an infinite impulse response filter used in Linkwitz–Riley audio crossovers, named after its inventors Siegfried Linkwitz and Russ Riley, which was originally described in Active Crossover Networks for Noncoincident Drivers in JAES Volume 24 Issue 1 pp. 2-8; February 1976. It is also known as a Butterworth squared filter. A Linkwitz-Riley "L-R" crossover consists of a parallel combination of a low-pass and a high-pass L-R filter. The filters are usually designed by cascading two Butterworth filters, each of which has −3 dB gain at the cut-off frequency. The resulting Linkwitz–Riley filter has a −6 dB gain at the cutoff frequency. This means that summing the low-pass and high-pass outputs, the gain at the crossover frequency will be 0 dB, so the crossover behaves like an all-pass filter, having a flat amplitude response with a smoothly changing phase response. This is the biggest advantage of L-R crossovers compared to Butterworth crossovers, whose summed output has a +3 dB peak around the crossover frequency. Since cascading two nth order Butterworth filters will give a (2n)th order Linkwitz–Riley filter, theoretically any 2n order Linkwitz–Riley crossover can be designed. However, crossovers of higher order than 4th may have less usability due to their complexity and increasing peak in group delay around crossover frequency.

Common types

Second order Linkwitz–Riley crossover (LR2, LR-2)

Second-order Linkwitz–Riley crossovers (LR2) have a 12 dB/octave (40 dB/decade) slope. They can be realized by cascading two one-pole filters, or using a Sallen Key filter topology with a Q0 value of 0.5. There is a 180° phase difference between the lowpass and highpass output of the filter, which can be corrected by inverting one signal. In loudspeakers this is usually done by reversing the polarity of one driver if the crossover is passive. For active crossovers inversion is usually done using a unity gain inverting op-amp.

Fourth order Linkwitz–Riley crossover (LR4, LR-4)

Fourth-order Linkwitz–Riley crossovers (LR4) are probably today's most commonly used type of audio crossover. They are constructed by cascading two 2nd-order Butterworth filters. Their slope is 24 dB/octave (80 dB/decade). The phase difference amounts to 360°, i.e. the two drives appear in phase, albeit with a full period time delay for the low-pass section.

Eighth order Linkwitz–Riley crossover (LR8, LR-8)

Eighth-order Linkwitz–Riley crossovers (LR8) have a very steep, 48 dB/octave (160 dB/decade) slope. They can be constructed by cascading two 4th-order Butterworth filters.

See also

{{commons category|Linkwitz–Riley filters}}
  • Audio crossover
  • Butterworth filter
  • Siegfried Linkwitz
  • Partition of unity

References

  • Linkwitz Lab: Crossovers
  • Linkwitz Lab: Active Filters
  • Linkwitz–Riley Crossovers: A Primer
  • [https://web.archive.org/web/20070310185350/http://www.sweetwater.com/expert-center/glossary/t--LinkwitzRiley Glossary: Linkwitz–Riley]
{{DEFAULTSORT:Linkwitz-Riley filter}}

4 : Linear filters|Network synthesis filters|Audio engineering|Filter theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 12:05:08