请输入您要查询的百科知识:

 

词条 Cytochrome b6f complex
释义

  1. Enzyme structure

  2. Biological function

  3. Reaction mechanism

     Q cycle  Cyclic electron transfer 

  4. References

  5. External links

{{Infobox protein family
| Symbol = B6F
| Name = Cytochrome b6f complex
| image = 1q90_opm.png
| width =
| caption = Crystal structure of the cytochrome b6f complex from C. reinhardtii ({{PDB3|1q90}}). Hydrocarbon boundaries of the lipid bilayer are shown by red and blue lines (thylakoid space side and stroma side, respectively).
| Pfam = PF05115
| Pfam_clan =
| InterPro = IPR007802
| SMART =
| PROSITE =
| MEROPS =
| SCOP =
| TCDB = 3.D.3
| OPM family = 92
| OPM protein = 4pv1
| CAZy =
| CDD =
| Membranome superfamily = 258
}}{{enzyme
| Name = Cytochrome b6f complex
| EC_number = 1.10.99.1
| image =
| width = 250
| caption =
}}

The cytochrome b6f complex (plastoquinol—plastocyanin reductase; {{EC number|1.10.99.1}}) is an enzyme found in the thylakoid membrane in chloroplasts of plants, cyanobacteria, and green algae, that catalyzes the transfer of electrons from plastoquinol to plastocyanin.[1] The reaction is analogous to the reaction catalyzed by cytochrome bc1 (Complex III) of the mitochondrial electron transport chain. During photosynthesis, the cytochrome b6f complex is one step along the chain that transfers electrons from Photosystem II to Photosystem I, and at the same time pumps protons into the thylakoid space that contribute to create an electrochemical (energy) gradient[2] which is later used to synthesize ATP from ADP.

Enzyme structure

The cytochrome b6f complex is a dimer, with each monomer composed of eight subunits.[3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM, and PetN.[3][4] The total molecular weight is 217 kDa.

The crystal structure of cytochrome b6f complexes from Chlamydomonas reinhardtii, Mastigocladus laminosus, and Nostoc sp. PCC 7120 have been determined.[2][5][6][7][8][9]

The core of the complex is structurally similar to cytochrome bc1 core. Cytochrome b6 and subunit IV are homologous to cytochrome b[10] and the Rieske iron-sulfur proteins of the two complexes are homologous.[11] However, cytochrome f and cytochrome c1 are not homologous.[12]

Cytochrome b6f contains seven prosthetic groups.[13][14] Four are found in both cytochrome b6f and bc1: the c-type heme of cytochrome c1 and f, the two b-type hemes (bp and bn) in bc1 and b6f, and the [2Fe-2S] cluster of the Rieske protein. Three unique prosthetic groups are found in cytochrome b6f: chlorophyll a, β-carotene, and heme cn (also known as heme x).[5]

The inter-monomer space within the core of the cytochrome b6f complex dimer is occupied by lipids,[9] which provides directionality to heme-heme electron transfer through modulation of the intra-protein dielectric environment.[15]

Biological function

In photosynthesis, the cytochrome b6f complex functions to mediate the transfer of electrons between the two photosynthetic reaction center complexes, from Photosystem II to Photosystem I, while transferring protons from the chloroplast stroma across the thylakoid membrane into the lumen.[2] Electron transport via cytochrome b6f is responsible for creating the proton gradient that drives the synthesis of ATP in chloroplasts.[4]

In a separate reaction, the cytochrome b6f complex plays a central role in cyclic photophosphorylation, when NADP+ is not available to accept electrons from reduced ferredoxin.[1] This cycle results in the creation of a proton gradient by cytochrome b6f, which can be used to drive ATP synthesis. It has also been shown that this cycle is essential for photosynthesis,[16] in which it is proposed to help maintain the proper ratio of ATP/NADPH production for carbon fixation.[17][18]

The p-side quinol deprotonation-oxidation reactions within the cytochrome b6f complex have been implicated in the generation of reactive oxygen species.[19] An integral chlorophyll molecule located within the quinol oxidation site has been suggested to perform a structural, non-photochemical function in enhancing the rate of formation of the reactive oxygen species, possibly to provide a redox-pathway for intra-cellular communication.[20]

Reaction mechanism

The cytochrome b6f complex is responsible for "non-cyclic" (1) and "cyclic" (2) electron transfer between two mobile redox carriers, plastoquinone (QH2) and plastocyanin (Pc):

H2Ophotosystem II QH2Cyt b6fPcphotosystem INADPH(1)
QH2Cyt b6fPcphotosystem IQ(2)

Cytochrome b6f catalyzes the transfer of electrons from plastoquinol to plastocyanin, while pumping two protons from the stroma into the thylakoid lumen:


QH2 + 2Pc(Cu2+) + 2H+ (stroma) → Q + 2Pc(Cu+) + 4H+ (lumen)[1]

This reaction occurs through the Q cycle as in Complex III.[21] Plastoquinone acts as the electron carrier, transferring its two electrons to high- and low-potential electron transport chains (ETC) via a mechanism called electron bifurcation.[22]

Q cycle

First half of Q cycle
  1. QH2 binds to the positive 'p' side (lumen side) of the complex. It is oxidized to a semiquinone (SQ) by the iron-sulfur center (high-potential ETC) and releases two protons to the thylakoid lumen{{Citation needed|reason=Semiquinones have lost just a single proton and single electron. Why does this say that two protons are released?|date=February 2017}}.
  2. The reduced iron-sulfur center transfers its electron through cytochrome f to Pc.
  3. In the low-potential ETC, SQ transfers its electron to heme bp of cytochrome b6.
  4. Heme bp then transfers the electron to heme bn.
  5. Heme bn reduces Q with one electron to form SQ.
Second half of Q cycle
  1. A second QH2 binds to the complex.
  2. In the high-potential ETC, one electron reduces another oxidized Pc.
  3. In the low-potential ETC, the electron from heme bn is transferred to SQ, and the completely reduced Q2− takes up two protons from the stroma to form QH2.
  4. The oxidized Q and the reduced QH2 that has been regenerated diffuse into the membrane.

Cyclic electron transfer

In contrast to Complex III, cytochrome b6f catalyzes another electron transfer reaction that is central to cyclic photophosphorylation. The electron from ferredoxin (Fd) is transferred to plastoquinone and then the cytochrome b6f complex to reduce plastocyanin, which is reoxidized by P700 in Photosystem I.[23] The exact mechanism for how plastoquinone is reduced by ferredoxin is still under investigation. One proposal is that there exists a ferredoxin:plastoquinone-reductase or an NADP dehydrogenase.[23] Since heme x does not appear to be required for the Q cycle and is not found in Complex III, it has been proposed that it is used for cyclic photophosphorylation by the following mechanism:[22][24]

  1. Fd (red) + heme x (ox) → Fd (ox) + heme x (red)
  2. heme x (red) + Fd (red) + Q + 2H+ → heme x (ox) + Fd (ox) + QH2

References

1. ^{{cite book | last1 = Berg | first1 = Jeremy M. | last2 = Tymoczko | first2 = John L. | last3 = Stryer | first3 = Lubert | last4 = Stryer | first4 = Lubert | name-list-format = vanc | title = Biochemistry | year = 2007 | publisher = W.H. Freeman | location = New York | isbn = 978-0-7167-8724-2 | pages = }}
2. ^{{cite journal | vauthors = Hasan SS, Yamashita E, Baniulis D, Cramer WA | title = Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 110 | issue = 11 | pages = 4297–302 | date = Mar 2013 | pmid = 23440205 | pmc = 3600468 | doi = 10.1073/pnas.1222248110 }}
3. ^{{cite journal | vauthors = Whitelegge JP, Zhang H, Aguilera R, Taylor RM, Cramer WA | title = Full subunit coverage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein: cytochrome b(6)f complex from spinach and the cyanobacterium Mastigocladus laminosus | journal = Molecular & Cellular Proteomics | volume = 1 | issue = 10 | pages = 816–27 | date = Oct 2002 | pmid = 12438564 | doi = 10.1074/mcp.m200045-mcp200 }}
4. ^{{cite book | last1 = Voet | first1 = Donald J. | last2 = Voet | first2 = Judith G. | name-list-format = vanc | title = Biochemistry | year = 2011 | publisher = Wiley, J | location = New York, NY | isbn = 978-0-470-57095-1 | pages = }}
5. ^{{cite journal | vauthors = Stroebel D, Choquet Y, Popot JL, Picot D | title = An atypical haem in the cytochrome b(6)f complex | journal = Nature | volume = 426 | issue = 6965 | pages = 413–8 | date = Nov 2003 | pmid = 14647374 | doi = 10.1038/nature02155 }}
6. ^{{cite journal | vauthors = Yamashita E, Zhang H, Cramer WA | title = Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn | journal = Journal of Molecular Biology | volume = 370 | issue = 1 | pages = 39–52 | date = Jun 2007 | pmid = 17498743 | pmc = 1993820 | doi = 10.1016/j.jmb.2007.04.011 }}
7. ^{{cite journal | vauthors = Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA | title = Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120 | journal = The Journal of Biological Chemistry | volume = 284 | issue = 15 | pages = 9861–9 | date = Apr 2009 | pmid = 19189962 | pmc = 2665108 | doi = 10.1074/jbc.M809196200 }}
8. ^{{cite journal | vauthors = Hasan SS, Stofleth JT, Yamashita E, Cramer WA | title = Lipid-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis | journal = Biochemistry | volume = 52 | issue = 15 | pages = 2649–54 | date = Apr 2013 | pmid = 23514009 | pmc = 4034689 | doi = 10.1021/bi301638h }}
9. ^{{cite journal | vauthors = Hasan SS, Cramer WA | title = Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex | journal = Structure | volume = 22 | issue = 7 | pages = 1008–15 | date = Jul 2014 | pmid = 24931468 | pmc = 4105968 | doi = 10.1016/j.str.2014.05.004 }}
10. ^{{cite journal | vauthors = Widger WR, Cramer WA, Herrmann RG, Trebst A | title = Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b6-f complex: position of the cytochrome b hemes in the membrane | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 81 | issue = 3 | pages = 674–8 | date = Feb 1984 | pmid = 6322162 | pmc = 344897 | doi = 10.1073/pnas.81.3.674 }}
11. ^{{cite journal | vauthors = Carrell CJ, Zhang H, Cramer WA, Smith JL | title = Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein | journal = Structure | volume = 5 | issue = 12 | pages = 1613–25 | date = Dec 1997 | pmid = 9438861 | doi = 10.1016/s0969-2126(97)00309-2 }}
12. ^{{cite journal | vauthors = Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL | title = Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation | journal = Structure | volume = 2 | issue = 2 | pages = 95–105 | date = Feb 1994 | pmid = 8081747 | doi = 10.1016/s0969-2126(00)00012-5 }}
13. ^{{cite journal | vauthors = Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA | title = Structure-function of the cytochrome b6f complex | journal = Photochemistry and Photobiology | volume = 84 | issue = 6 | pages = 1349–58 | year = 2008 | pmid = 19067956 | doi = 10.1111/j.1751-1097.2008.00444.x }}
14. ^{{cite journal | vauthors = Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL | title = Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex | journal = Biochemistry | volume = 43 | issue = 20 | pages = 5921–9 | date = May 2004 | pmid = 15147175 | doi = 10.1021/bi049444o }}
15. ^{{cite journal | vauthors = Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA | title = A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex | journal = The Journal of Physical Chemistry B | volume = 118 | issue = 24 | pages = 6614–25 | date = Jun 2014 | pmid = 24867491 | pmc = 4067154 | doi = 10.1021/jp501165k }}
16. ^{{cite journal | vauthors = Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T | title = Cyclic electron flow around photosystem I is essential for photosynthesis | journal = Nature | volume = 429 | issue = 6991 | pages = 579–82 | date = Jun 2004 | pmid = 15175756 | doi = 10.1038/nature02598 }}
17. ^{{cite book | last1 = Blankenship | first1 = Robert E. | name-list-format = vanc | title = Molecular mechanisms of photosynthesis | year = 2002 | publisher = Blackwell Science | location = Oxford ; Malden, MA | isbn = 978-0-632-04321-7 | pages = }}
18. ^{{cite journal | title = Cyclic photophosphorylation and electron transport | journal = Biochimica et Biophysica Acta (BBA) - Bioenergetics | first = Derek | last = Bendall| name-list-format = vanc | doi=10.1016/0005-2728(94)00195-B | volume=1229 | pages=23–38}}
19. ^{{cite journal | vauthors = Baniulis D, Hasan SS, Stofleth JT, Cramer WA | title = Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis | journal = Biochemistry | volume = 52 | issue = 50 | pages = 8975–83 | date = Dec 2013 | pmid = 24298890 | pmc = 4037229 | doi = 10.1021/bi4013534 }}
20. ^{{cite journal | vauthors = Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA | title = Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal | journal = Biophysical Journal | volume = 107 | issue = 7 | pages = 1620–8 | date = Oct 2014 | pmid = 25296314 | pmc = 4190601 | doi = 10.1016/j.bpj.2014.08.003 }}
21. ^{{cite journal | vauthors = Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL | title = SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 47 | issue = | pages = 477–508 | date = Jun 1996 | pmid = 15012298 | doi = 10.1146/annurev.arplant.47.1.477 }}
22. ^{{cite journal | vauthors = Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL | title = Transmembrane traffic in the cytochrome b6f complex | journal = Annual Review of Biochemistry | volume = 75 | issue = | pages = 769–90 | year = 2006 | pmid = 16756511 | doi = 10.1146/annurev.biochem.75.103004.142756 }}
23. ^{{cite journal | vauthors = Joliot P, Joliot A | title = Cyclic electron transfer in plant leaf | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 99 | issue = 15 | pages = 10209–14 | date = Jul 2002 | pmid = 12119384 | doi = 10.1073/pnas.102306999 | pmc=126649}}
24. ^{{cite journal | vauthors = Cramer WA, Yan J, Zhang H, Kurisu G, Smith JL | title = Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the 'hors d'oeuvres hypothesis' for assembly of the complex | journal = Photosynthesis Research | volume = 85 | issue = 1 | pages = 133–43 | year = 2005 | pmid = 15977064 | doi = 10.1007/s11120-004-2149-5 }}

External links

  • Structure-Function Studies of the Cytochrome b6f Complex - Current research on cytochrome b6f in William Cramer's Lab at Purdue University, USA
  • {{UMichOPM|families|superfamily|3}} - Calculated positions of b6f and related complexes in membranes
  • {{MeshName|Cytochrome+b6f+Complex}}
{{Multienzyme complexes}}{{Proton pumps}}{{Diphenol family oxidoreductases}}{{Enzymes}}{{Portal bar|Molecular and Cellular Biology|border=no}}{{DISPLAYTITLE:Cytochrome b6f complex}}

5 : Hemoproteins|Iron-sulfur proteins|Light reactions|Integral membrane proteins|EC 1.10.99

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 16:36:24