请输入您要查询的百科知识:

 

词条 List of convex uniform tilings
释义

  1. Laves tilings

  2. Convex uniform tilings of the Euclidean plane

      The [4,4] group family    The [6,3] group family    Non-Wythoffian uniform tiling    Uniform colorings  

  3. See also

  4. References

  5. Further reading

  6. External links

This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings.

There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face.

John Conway calls these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.

Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.8.8 means one square and two octagons on a vertex.

These 11 uniform tilings have 32 different uniform colorings. A uniform coloring allows identical sided polygons at a vertex to be colored differently, while still maintaining vertex-uniformity and transformational congruence between vertices. (Note: Some of the tiling images shown below are not color-uniform)

In addition to the 11 convex uniform tilings, there are also 14 nonconvex tilings, using star polygons, and reverse orientation vertex configurations.

Laves tilings

In the 1987 book, Tilings and Patterns, Branko Grünbaum calls the vertex-uniform tilings Archimedean in parallel to the Archimedean solids. Their dual tilings are called Laves tilings in honor of crystallographer Fritz Laves.[1] [2] They're also called Shubnikov–Laves tilings after Shubnikov, Alekseĭ Vasilʹevich.[3] John Conway calls the uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.

The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones.[4] Each vertex has edges evenly spaced around it. Three dimensional analogues of the planigons are called stereohedrons.

These dual tilings are listed by their face configuration, the number of faces at each vertex of a face. For example V4.8.8 means isosceles triangle tiles with one corner with four triangles, and two corners containing eight triangles.

Eleven planigons
TrianglesQuadrilateralsPentagonsHexagon
V6.6.6
{{CDD>node|split1|branch}}
V4.8.8
{{CDD>node|4|node|4|node}}
V4.6.12
{{CDD>node|6|node|3|node}}
V3.12.12
{{CDD>2}}
V4.4.4.4
{{CDD>labelinfin|branch|2|branch|labelinfin}}
V3.6.3.6
{{CDD>2}}
V3.4.6.4
{{CDD>2}}
V3.3.4.3.4
{{CDD>2}}
V3.3.3.3.6
{{CDD>2}}
V3.3.3.4.4
{{CDD>2}}
V3.3.3.3.3.3
{{CDD>2}}

Convex uniform tilings of the Euclidean plane

All reflectional forms can be made by Wythoff constructions, represented by Wythoff symbols, or Coxeter-Dynkin diagrams, each operating upon one of three Schwarz triangle (4,4,2), (6,3,2), or (3,3,3), with symmetry represented by Coxeter groups: [4,4], [6,3], or [3[3]]. Alternated forms such as the snub can also be represented by special markups within each system. Only one uniform tiling can't be constructed by a Wythoff process, but can be made by an elongation of the triangular tiling. An orthogonal mirror construction [∞,2,∞] also exists, seen as two sets of parallel mirrors making a rectangular fundamental domain. If the domain is square, this symmetry can be doubled by a diagonal mirror into the [4,4] family.

Families:

  • (4,4,2), , [4,4] - Symmetry of the regular square tiling
    • , [∞,2,∞]
  • (6,3,2), , [6,3] - Symmetry of the regular hexagonal tiling and triangular tiling.
    • (3,3,3), , [3[3]]

The [4,4] group family

{{Uniform tiles db|Uniform tiling list table|Us}}{{Uniform tiles db|Uniform tiling list table|Uts}}{{Uniform tiles db|Uniform tiling list table|Uns}}
Uniform tilings
(Platonic and Archimedean)
Vertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram(s)
Dual-uniform tilings
(called Laves or Catalan tilings)

The [6,3] group family

{{Uniform tiles db|Uniform tiling list table|Uh}}{{Uniform tiles db|Uniform tiling list table|Uht}}{{Uniform tiles db|Uniform tiling list table|Uth}}{{Uniform tiles db|Uniform tiling list table|Ut}}{{Uniform tiles db|Uniform tiling list table|Urth}}{{Uniform tiles db|Uniform tiling list table|Ugrth}}{{Uniform tiles db|Uniform tiling list table|Unh}}
Platonic and Archimedean tilingsVertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram(s)
Dual Laves tilings

Non-Wythoffian uniform tiling

{{Uniform tiles db|Uniform tiling list table|Uet}}
Platonic and Archimedean tilingsVertex figure and dual face
Wythoff symbol(s)
Symmetry group
Coxeter diagram
Dual Laves tilings

Uniform colorings

There are a total of 32 uniform colorings of the 11 uniform tilings:

  1. Triangular tiling - 9 uniform colorings, 4 wythoffian, 5 nonwythoffian
  2. Square tiling - 9 colorings: 7 wythoffian, 2 nonwythoffian
  3. Hexagonal tiling - 3 colorings, all wythoffian
  4. Trihexagonal tiling - 2 colorings, both wythoffian
  5. Snub square tiling - 2 colorings, both alternated wythoffian
  6. Truncated square tiling - 2 colorings, both wythoffian
  7. Truncated hexagonal tiling - 1 coloring, wythoffian
  8. Rhombitrihexagonal tiling - 1 coloring, wythoffian
  9. Truncated trihexagonal tiling - 1 coloring, wythoffian
  10. Snub hexagonal tiling - 1 coloring, alternated wythoffian
  11. Elongated triangular tiling - 1 coloring, nonwythoffian

See also

  • Convex uniform honeycomb - The 28 uniform 3-dimensional tessellations, a parallel construction to the convex uniform Euclidean plane tilings.
  • List of tessellations
  • Percolation threshold
  • Uniform tilings in hyperbolic plane

References

1. ^{{cite book | author=Grünbaum, Branko; Shephard, G. C. | title=Tilings and Patterns | publisher=W. H. Freeman and Company | year=1987 | isbn=0-7167-1193-1 |pages=59, 96}}
2. ^The Symmetries of things, Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Euclidean Plane Tessellations, p. 288
3. ^[https://books.google.com/books?id=5rPnCAAAQBAJ&lpg=PA169&ots=kdjtDmwjqQ&dq=Shubnikov%E2%80%93Laves%20tilings&pg=PA169#v=onepage&q=Shubnikov%E2%80%93Laves%20tilings&f=false Encyclopaedia of Mathematics: Orbit - Rayleigh Equation] edited by Michiel Hazewinkel, 1991
4. ^{{SpringerEOM|title=Planigon|id=Planigon&oldid=31578|first=A. B.|last=Ivanov}}

Further reading

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} [https://web.archive.org/web/20100919143320/https://akpeters.com/product.asp?ProdCode=2205] (Chapter 19, Archimedean tilings, table 19.1, Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table).
  • H.S.M. Coxeter, M.S. Longuet-Higgins, J.C.P. Miller, Uniform polyhedra, Phil. Trans. 1954, 246 A, 401–50.
  • {{The Geometrical Foundation of Natural Structure (book)}} (Section 2–3 Circle packings, plane tessellations, and networks, pp 34–40).
  • Asaro, et. al. "Uniform edge-c-colorings of the Archimedean Tilings",  .
  • Grünbaum, Branko & Shepard, Geoffrey (Nov. 1977). "Tilings by Regular polygons", Vol. 50, No. 5.
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, {{isbn|978-0866514613}}, pp. 50–57, 71-74

External links

  • {{MathWorld | urlname=UniformTessellation | title=Uniform tessellation}}
  • Uniform Tessellations on the Euclid plane
  • Tessellations of the Plane
  • David Bailey's World of Tessellations
  • k-uniform tilings
  • n-uniform tilings
{{Tessellation}}

3 : Euclidean tilings|Uniform tilings|Mathematics-related lists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 6:51:53