释义 |
- Involutional symmetry
- Cyclic symmetry
- Dihedral symmetry
- Polyhedral symmetry
- See also
- Notes
- References
- External links
{{3d point group navigator}}Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation,[1] orbifold notation,[2] and order. John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion.[3] Hermann–Mauguin notation (International notation) is also given. The crystallography groups, 32 in total, are a subset with element orders 2, 3, 4 and 6.[4] Involutional symmetry There are four involutional groups: no symmetry (C1), reflection symmetry (Cs), 2-fold rotational symmetry (C2), and central point symmetry (Ci). Intl | Geo [5] | Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
1 | 1}} | 11 | C1 | C1 | ][ [ ]+ | 1 | 2 | 2}} | 22 | D1 = C2 | D2 = C2 | [2]+ | 2 | 1}} | 22}} | × | Ci = S2 | CC2 | [2+,2+] | 2 | 2}} = m | 1 | * | Cs = C1v = C1h | ±C1 = CD2 | [ ] | 2 |
Cyclic symmetry There are four infinite cyclic symmetry families, with n = 2 or higher. (n may be 1 as a special case as no symmetry) Intl | Geo
| Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
4}} | 42}} | 2× | S4 | CC4 | [2+,4+] | 4 | 2/m | 2}}2 | 2* | C2h = D1d | ±C2 = ±D2 | [2,2+] [2+,2] | 4 |
Intl | Geo
| Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
2 3 4 5 6 n | 2}} {{overline|3}} {{overline|4}} {{overline|5}} {{overline|6}} {{overline|n}} | 22 33 44 55 66 nn | C2 C3 C4 C5 C6 Cn | C2 C3 C4 C5 C6 Cn | [2]+ [3]+ [4]+ [5]+ [6]+ [n]+
| 2 3 4 5 6 n | 2mm 3m 4mm 5m 6mm nm (n is odd) nmm (n is even) | 2 3 4 5 6 n | *22 *33 *44 *55 *66 *nn | C2v C3v C4v C5v C6v Cnv | CD4 CD6 CD8 CD10 CD12 CD2n | [2] [3] [4] [5] [6] [n] | 4 6 8 10 12 2n | 3}} {{overline|8}} {{overline|5}} {{overline|12}} - | 62}} {{overline|82}} {{overline|10.2}} {{overline|12.2}} {{overline|2n.2}} | 3× 4× 5× 6× n× | S6 S8 S10 S12 S2n | ±C3 CC8 ±C5 CC12 CC2n / ±Cn | [2+,6+] [2+,8+] [2+,10+] [2+,12+] [2+,2n+] | 6 8 10 12 2n | 6}} 4/m 5/m={{overline|10}} 6/m n/m | 3}}2 {{overline|4}}2 {{overline|5}}2 {{overline|6}}2 {{overline|n}}2 | 3* 4* 5* 6* n* | C3h C4h C5h C6h Cnh | CC6 ±C4 CC10 ±C6 ±Cn / CC2n | [2,3+] [2,4+] [2,5+] [2,6+] [2,n+] | 6 8 10 12 2n |
Dihedral symmetry There are three infinite dihedral symmetry families, with n = 2 or higher (n may be 1 as a special case). Intl | Geo
| Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
222 | 2}}.{{overline|2}} | 222 | D2 | D4 | [2,2]+ | 4 | 4}}2m | 2}} | 2*2 | D2d | DD8 | [2+,4] | 8 | mmm | 22 | *222 | D2h | ±D4 | [2,2] | 8 |
Intl | Geo
| Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
32 422 52 622 | 3}}.{{overline|2}} {{overline|4}}.{{overline|2}} {{overline|5}}.{{overline|2}} {{overline|6}}.{{overline|2}} {{overline|n}}.{{overline|2}} | 223 224 225 226 22n | D3 D4 D5 D6 Dn | D6 D8 D10 D12 D2n | [2,3]+ [2,4]+ [2,5]+ [2,6]+ [2,n]+ | 6 8 10 12 2n | 3}}m {{Overline|8}}2m {{Overline|5}}m {{Overline|12}}.2m
| 2}} 8{{overline|2}} 10.{{overline|2}} 12.{{overline|2}} n{{overline|2}}
| 2*3 2*4 2*5 2*6 2*n | D3d D4d D5d D6d Dnd | ±D6 DD16 ±D10 DD24 DD4n / ±D2n | [2+,6] [2+,8] [2+,10] [2+,12] [2+,2n] | 12 16 20 24 4n | 6}}m2 4/mmm {{overline|10}}m2 6/mmm | 32 42 52 62 n2 | *223 *224 *225 *226 *22n | D3h D4h D5h D6h Dnh | DD12 ±D8 DD20 ±D12 ±D2n / DD4n | [2,3] [2,4] [2,5] [2,6] [2,n] | 12 16 20 24 4n |
Polyhedral symmetry {{See|Polyhedral groups}}There are three types of polyhedral symmetry: tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, named after the triangle-faced regular polyhedra with these symmetries. Tetrahedral symmetry Intl | Geo
| Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
23 | 3}}.{{overline|3}} | 332 | T | T | [3,3]+ = [4,3+]+ | 12 | 3}} | 3}} | 3*2 | Th | ±T | [4,3+] | 24 | 4}}3m | 33 | *332 | Td | TO | [3,3] = [1+,4,3] | 24 | Octahedral symmetry Intl | Geo | Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
432 | 4}}.{{overline|3}} | 432 | O | O | [4,3]+ = [[3,3]]+ | 24 | 3}}m | 43 | *432 | Oh | ±O | [4,3] = [[3,3]] | 48 | Icosahedral symmetry Intl | Geo | Orb. | Schön. | Con. | Cox. | Ord. | Fund. domain |
---|
532 | 5}}.{{overline|3}} | 532 | I | I | [5,3]+ | 60 | 53}}2/m | 53 | *532 | Ih | ±I | [5,3] | 120 | See also- Crystallographic point group
- Triangle group
- List of planar symmetry groups
- Point groups in two dimensions
Notes1. ^Johnson, 2015 2. ^Conway, 2008 3. ^Conway, 2003 4. ^Sands, 1993 5. ^The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF
References - Peter R. Cromwell, Polyhedra (1997), Appendix I
- {{cite book|last=Sands |first=Donald E. |title=Introduction to Crystallography |year=1993 |publisher=Dover Publications, Inc. |location=Mineola, New York |isbn=0-486-67839-3 |chapter=Crystal Systems and Geometry |page=165 }}
- On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith {{isbn|978-1-56881-134-5}}
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, {{isbn|978-1-56881-220-5}}
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- N.W. Johnson: Geometries and Transformations, (2018) {{ISBN|978-1-107-10340-5}} Chapter 11: Finite symmetry groups, Table 11.4 Finite Groups of Isometries in 3-space
External links- Finite spherical symmetry groups
- {{MathWorld | urlname=SchoenfliesSymbol | title=Schoenflies symbol}}
- {{MathWorld | urlname=CrystallographicPointGroups | title=Crystallographic point groups}}
- [https://web.archive.org/web/20080316083237/http://homepage.mac.com/dmccooey/polyhedra/Simplest.html Simplest Canonical Polyhedra of Each Symmetry Type], by David I. McCooey
4 : Polyhedra|Symmetry|Group theory|Mathematics-related lists |