请输入您要查询的百科知识:

 

词条 List of finite spherical symmetry groups
释义

  1. Involutional symmetry

  2. Cyclic symmetry

  3. Dihedral symmetry

  4. Polyhedral symmetry

  5. See also

  6. Notes

  7. References

  8. External links

{{3d point group navigator}}

Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry.

This article lists the groups by Schoenflies notation, Coxeter notation,[1] orbifold notation,[2] and order. John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion.[3]

Hermann–Mauguin notation (International notation) is also given. The crystallography groups, 32 in total, are a subset with element orders 2, 3, 4 and 6.[4]

Involutional symmetry

There are four involutional groups: no symmetry (C1), reflection symmetry (Cs), 2-fold rotational symmetry (C2), and central point symmetry (Ci).

Intl Geo
[5]
Orb. Schön. Con. Cox. Ord. Fund.
domain
11}} 11 C1 C1 ][
[ ]+
1
22}} 22 D1
= C2
D2
= C2
[2]+ 2
1}}22}} × Ci
= S2
CC2 [2+,2+] 2
2}}
= m
1 * Cs
= C1v
= C1h
±C1
= CD2
[ ] 2

Cyclic symmetry

There are four infinite cyclic symmetry families, with n = 2 or higher. (n may be 1 as a special case as no symmetry)

Intl Geo
Orb. Schön. Con. Cox. Ord. Fund.
domain
4}}42}} S4 CC4 [2+,4+] 4
2/m2}}2 2* C2h
= D1d
±C2
= ±D2
[2,2+]
[2+,2]
4
Intl Geo
Orb. Schön. Con. Cox. Ord. Fund.
domain
2
3
4
5
6
n
2}}
{{overline|3}}
{{overline|4}}
{{overline|5}}
{{overline|6}}
{{overline|n}}
22
33
44
55
66
nn
C2
C3
C4
C5
C6
Cn
C2
C3
C4
C5
C6
Cn
[2]+
[3]+
[4]+
[5]+
[6]+
[n]+
2
3
4
5
6
n
2mm
3m
4mm
5m
6mm
nm (n is odd)
nmm (n is even)
2
3
4
5
6
n
*22
*33
*44
*55
*66
*nn
C2v
C3v
C4v
C5v
C6v
Cnv
CD4
CD6
CD8
CD10
CD12
CD2n
[2]
[3]
[4]
[5]
[6]
[n]
4
6
8
10
12
2n
3}}
{{overline|8}}
{{overline|5}}
{{overline|12}}
-
62}}
{{overline|82}}
{{overline|10.2}}
{{overline|12.2}}
{{overline|2n.2}}




S6
S8
S10
S12
S2n
±C3
CC8
±C5
CC12
CC2n / ±Cn
[2+,6+]
[2+,8+]
[2+,10+]
[2+,12+]
[2+,2n+]
6
8
10
12
2n
6}}
4/m
5/m={{overline|10}}
6/m
n/m
3}}2
{{overline|4}}2
{{overline|5}}2
{{overline|6}}2
{{overline|n}}2
3*
4*
5*
6*
n*
C3h
C4h
C5h
C6h
Cnh
CC6
±C4
CC10
±C6
±Cn / CC2n
[2,3+]
[2,4+]
[2,5+]
[2,6+]
[2,n+]
6
8
10
12
2n

Dihedral symmetry

There are three infinite dihedral symmetry families, with n = 2 or higher (n may be 1 as a special case).

Intl Geo
Orb. Schön. Con. Cox. Ord. Fund.
domain
2222}}.{{overline|2}} 222 D2 D4 [2,2]+ 4
4}}2m2}} 2*2 D2d DD8 [2+,4] 8
mmm 22 *222 D2h ±D4 [2,2] 8
Intl Geo
Orb. Schön. Con. Cox. Ord. Fund.
domain
32
422
52
622
3}}.{{overline|2}}
{{overline|4}}.{{overline|2}}
{{overline|5}}.{{overline|2}}
{{overline|6}}.{{overline|2}}
{{overline|n}}.{{overline|2}}
223
224
225
226
22n
D3
D4
D5
D6
Dn
D6
D8
D10
D12
D2n
[2,3]+
[2,4]+
[2,5]+
[2,6]+
[2,n]+
6
8
10
12
2n
3}}m
{{Overline|8}}2m
{{Overline|5}}m
{{Overline|12}}.2m
2}}
8{{overline|2}}
10.{{overline|2}}
12.{{overline|2}}
n{{overline|2}}
2*3
2*4
2*5
2*6
2*n
D3d
D4d
D5d
D6d
Dnd
±D6
DD16
±D10
DD24
DD4n / ±D2n
[2+,6]
[2+,8]
[2+,10]
[2+,12]
[2+,2n]
12
16
20
24
4n
6}}m2
4/mmm
{{overline|10}}m2
6/mmm
32
42
52
62
n2
*223
*224
*225
*226
*22n
D3h
D4h
D5h
D6h
Dnh
DD12
±D8
DD20
±D12
±D2n / DD4n
[2,3]
[2,4]
[2,5]
[2,6]
[2,n]
12
16
20
24
4n

Polyhedral symmetry

{{See|Polyhedral groups}}

There are three types of polyhedral symmetry: tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, named after the triangle-faced regular polyhedra with these symmetries.

Tetrahedral symmetry
Intl Geo
Orb. Schön. Con. Cox. Ord. Fund.
domain
233}}.{{overline|3}} 332 T T [3,3]+
= [4,3+]+
12
3}}3}} 3*2 Th ±T [4,3+] 24
4}}3m 33 *332 Td TO [3,3]
= [1+,4,3]
24
Octahedral symmetry
Intl Geo Orb. Schön. Con. Cox. Ord. Fund.
domain
4324}}.{{overline|3}} 432 O O [4,3]+
= [[3,3]]+
24
3}}m 43 *432 Oh ±O [4,3]
= [[3,3]]
48
Icosahedral symmetry
Intl Geo Orb. Schön. Con. Cox. Ord. Fund.
domain
5325}}.{{overline|3}} 532 I I [5,3]+ 60
53}}2/m 53 *532 Ih ±I [5,3] 120

See also

  • Crystallographic point group
  • Triangle group
  • List of planar symmetry groups
  • Point groups in two dimensions

Notes

1. ^Johnson, 2015
2. ^Conway, 2008
3. ^Conway, 2003
4. ^Sands, 1993
5. ^The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF  

References

  • Peter R. Cromwell, Polyhedra (1997), Appendix I
  • {{cite book|last=Sands |first=Donald E. |title=Introduction to Crystallography |year=1993 |publisher=Dover Publications, Inc. |location=Mineola, New York |isbn=0-486-67839-3 |chapter=Crystal Systems and Geometry |page=165 }}
  • On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith {{isbn|978-1-56881-134-5}}
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, {{isbn|978-1-56881-220-5}}
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • N.W. Johnson: Geometries and Transformations, (2018) {{ISBN|978-1-107-10340-5}} Chapter 11: Finite symmetry groups, Table 11.4 Finite Groups of Isometries in 3-space

External links

  • Finite spherical symmetry groups
  • {{MathWorld | urlname=SchoenfliesSymbol | title=Schoenflies symbol}}
  • {{MathWorld | urlname=CrystallographicPointGroups | title=Crystallographic point groups}}
  • [https://web.archive.org/web/20080316083237/http://homepage.mac.com/dmccooey/polyhedra/Simplest.html Simplest Canonical Polyhedra of Each Symmetry Type], by David I. McCooey

4 : Polyhedra|Symmetry|Group theory|Mathematics-related lists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 10:42:22