请输入您要查询的百科知识:

 

词条 Dedekind group
释义

  1. Notes

  2. References

In group theory, a Dedekind group is a group G such that every subgroup of G is normal.

All abelian groups are Dedekind groups.

A non-abelian Dedekind group is called a Hamiltonian group.[1]

The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q8.

Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form {{nowrap|1=G = Q8 × B × D}}, where B is an elementary abelian 2-group, and D is a periodic abelian group with all elements of odd order.

Dedekind groups are named after Richard Dedekind, who investigated them in {{harv|Dedekind|1897}}, proving a form of the above structure theorem (for finite groups). He named the non-abelian ones after William Rowan Hamilton, the discoverer of quaternions.

In 1898 George Miller delineated the structure of a Hamiltonian group in terms of its order and that of its subgroups. For instance, he shows "a Hamilton group of order 2a has {{nowrap|22a − 6}} quaternion groups as subgroups". In 2005 Horvat et al[2] used this structure to count the number of Hamiltonian groups of any order {{nowrap|1=n = 2eo}} where o is an odd integer. When {{nowrap|e < 3}} then there are no Hamiltonian groups of order n, otherwise there are the same number as there are Abelian groups of order o.

Notes

1. ^{{cite book|author=Hall |title=The theory of groups|year=1999|url={{Google books|plainurl=y|id=oyxnWF9ssI8C|page=190|text=Hamiltonian}}|page=190}}
2. ^{{cite arxiv|last=Horvat|first=Boris|last2=Jaklič|first2=Gašper|last3=Pisanski|first3=Tomaž|date=2005-03-09|title=On the Number of Hamiltonian Groups|eprint=math/0503183}}

References

  • {{Citation | last1=Dedekind | first1=Richard | author1-link=Richard Dedekind | title=Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind | doi=10.1007/BF01447922 | mr=1510943 | jfm = 28.0129.03 | year=1897 | journal=Mathematische Annalen | issn=0025-5831 | volume=48 | issue=4 | pages=548–561 | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002256258}}.
  • Baer, R. Situation der Untergruppen und Struktur der Gruppe, Sitz.-Ber. Heidelberg. Akad. Wiss.2, 12-17, 1933.
  • {{Citation |title=The theory of groups |last=Hall |first=Marshall |authorlink=Marshall Hall (mathematician) |year=1999 |publisher=AMS Bookstore |isbn=978-0-8218-1967-8 |page=190 }}.
  • {{citation | last1 = Horvat | first1 = Boris | last2 = Jaklič | first2 = Gašper | last3 = Pisanski | first3 = Tomaž |author3-link=Tomaž Pisanski|year = 2005 | title = On the number of Hamiltonian groups | url = | journal = Mathematical Communications | volume = 10 | issue = 1| pages = 89–94 | bibcode = 2005math......3183H | arxiv = math/0503183 }}.
  • {{citation|first=G. A.|last=Miller|year=1898|title=On the Hamilton groups|journal= Bulletin of the American Mathematical Society |volume=4|issue=10|pages=510–515|doi=10.1090/s0002-9904-1898-00532-3}}.
  • {{citation|first=Olga|last=Taussky|authorlink=Olga Taussky-Todd|year=1970|title=Sums of squares|journal=American Mathematical Monthly|volume= 77|issue=8|pages=805–830|mr=0268121|doi=10.2307/2317016|jstor=2317016}}.

2 : Group theory|Properties of groups

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 2:36:17