词条 | Mate choice |
释义 |
These mechanisms are a part of evolutionary change because they operate in a way that causes the qualities that are desired in a mate to be more frequently passed on to each generation over time. For example, if female peacocks desire mates who have a colourful plumage, then this trait will increase in frequency over time as male peacocks with a colourful plumage will have more reproductive success.[2] Further investigation of this concept, has found that it is in fact the specific trait of blue and green colour near the eyespot that seems to increase the females likelihood of mating with a specific peacock.[3] Mate choice is one of two components of sexual selection, the other being intrasexual selection. Ideas on sexual selection were first introduced in 1871, by Charles Darwin, then expanded on by Ronald Fisher in 1915. At present, there are five sub mechanisms that explain how mate choice has evolved over time. These are direct phenotypic benefits, sensory bias, the Fisherian runaway hypothesis, indicator traits and genetic compatibility. In the majority of systems where mate choice exists, one sex tends to be competitive with their same-sex members[4] and the other sex is choosy (meaning they are selective when it comes to picking individuals to mate with). There are direct and indirect benefits of being the selective individual.[6][7][8] In most species, females are the choosy sex which discriminates among competitive males,[4] but there are several examples of reversed roles (see below). It is preferable for an individual to choose a compatible mate of the same species, in order to maintain reproductive success.[5] Other factors that can influence mate choice include pathogen stress and the Major Histocompatibility Complex (MHC). Origins and historyCharles Darwin first expressed his ideas on sexual selection and mate choice in his book The Descent of Man, and Selection in Relation to Sex in 1871. He was perplexed by the elaborate ornamentation that males of some species have, because such features appeared to be detrimental to survival and to have negative consequences for reproductive success. Darwin proposed two explanations for the existence of such traits: these traits are useful in male-male combat or they are preferred by females.[6] This article focuses on the latter. Darwin treated natural selection and sexual selection as two different topics, although in the 1930s biologists defined sexual selection as being a part of natural selection.[7]In 1915, Ronald Fisher wrote a paper on the evolution of female preference and secondary sexual characteristics.[8] Fifteen years later, he expanded this theory in a book called The Genetical Theory of Natural Selection. There he described a scenario where feedback between mate preference and a trait results in elaborate characters such as the long tail of the male peacock (see Fisherian runaway). In 1948, using Drosophila as a model, Angus John Bateman presented experimental evidence that male reproductive success is limited by the number of mates obtained, while female reproductive success is limited by the number of pregnancies that she can have in her lifetime.[9] Thus a female must be selective when choosing a mate because the quality of her offspring depends on it. Males must fight, in the form of intra-sexual competition, for the opportunity to mate because not all males will be chosen by females. This became known as Bateman's principle, and although this was a major finding that added to the work of Darwin and Fisher, it was overlooked until George C. Williams emphasised its importance in the 1960s and 1970s.[10][11] In 1972, soon after Williams' revival of the subject, Robert L. Trivers presented his parental investment theory. Trivers defined parental investment as any investment made by the parent that benefits his or her current offspring at the cost of investment in future offspring. These investments include the costs of producing gametes as well as any other care or efforts that parents provide after birth or hatching. Reformulating Bateman's ideas, Trivers argued that the sex which exhibits less parental investment (not necessarily the male) will have to compete for mating opportunities with the sex that invests more. The differences in levels of parental investment create the condition that favours mating biases.[12] Direct and indirect benefitsThe act of being choosy was likely selected for as a way to assess whether or not a potential partner’s contribution(s) would be capable of producing and/or maintaining the viability of an offspring. Utilizing these behaviors usually results in two types of benefits to the individual who is being choosy:
Mechanisms{{As of | 2018}} five proposed mechanisms address the evolution of mate choice:
Direct and/or indirect benefits drive the mating biases described in each mechanism. It is possible that these mechanisms co-occur, although the relative roles of each have not been evaluated adequately.[4] Direct phenotypic benefitsA choosy mate tends to have preferences for certain types of traits—also known as phenotypes—which would benefit them to have in a potential partner. These traits must be reliable, and commutative of something that directly benefits the choosy partner in some way.[16] Having a mating preference is advantageous in this situation because it directly affects reproductive fitness. Direct benefits are widespread and empirical studies provide evidence for this mechanism of evolution.[17][18] One example of a sexually selected trait with direct benefits is the bright plumage of the northern cardinal, a common backyard bird in the eastern United States. Male northern cardinals have conspicuous red feathers while the females are more cryptic in coloration. In this example, the females are the choosy sex and will use male plumage brightness as a signal when picking a mate – males with brighter plumage have been shown to feed their young more frequently than males with duller plumage.[19] This increased help in caring for the young lifts some of the burden from the mother so that she can raise more offspring than she could without help. Though this particular mechanism operates on the premise that all phenotypes must communicate something that benefits the choosy mate directly, they can still have unintentional indirect benefits to the mom by benefiting the offspring. For example, with the increased help in feeding their young seen in Northern Cardinals with more plumage brightness, comes an increase in the overall amount of food that is likely to be given to the offspring even if the mother has more children.[20] Though this trait was chosen for by the female to allow her more time and energy to be allocated to creating more offspring, it still benefits the offspring in that two parents are now providing food instead of one, thereby increasing the likelihood of the overall amount of food available to the offspring despite a possible increase in the amount of siblings.[20] Sensory bias{{see also|Mating call}}The sensory-bias hypothesis states that the preference for a trait evolves in a non-mating context and is then exploited by the less choosy sex in order to obtain more mating opportunities. The competitive sex evolves traits that exploit a pre-existing bias that the choosy sex already possesses. This mechanism is thought{{by whom|date=October 2018}} to explain remarkable trait differences in closely related species because it produces a divergence in signaling systems which leads to reproductive isolation.[21] Sensory bias has been demonstrated in guppies, freshwater fish from Trinidad and Tobago. In this mating system, female guppies prefer to mate with males with more orange body-coloration. However, outside of a mating context, both sexes prefer animate orange objects, which suggests that preference originally evolved in another context, like foraging.[22] Orange fruits are a rare treat that fall into streams where the guppies live. The ability to find these fruits quickly is an adaptive quality that has evolved outside of a mating context. Sometime after the affinity for orange objects arose, male guppies exploited this preference by incorporating large orange spots to attract females. Another example of sensory exploitation is the case of the water mite Neumania papillator, an ambush predator which hunts copepods (small crustaceans) passing by in the water column.[23] When hunting, N. papillator adopts a characteristic stance termed the "net stance": its holds its first four legs out into the water column, with its four hind legs resting on aquatic vegetation; this allows it to detect vibrational stimuli produced by swimming prey and to use this to orient towards and clutch at prey.[24] During courtship, males actively search for females;[25] if a male finds a female, he slowly circles around the female whilst trembling his first and second leg near her.[23][24] Male leg-trembling causes females (who were in the "net stance") to orient towards and often to clutch the male.[23] This does not damage the male or deter further courtship; the male then deposits spermatophores and begins to vigorously fan and jerk his fourth pair of legs over the spermatophore, generating a current of water that passes over the spermatophores and towards the female.[23] Sperm-packet uptake by the female would sometimes follow.[23] Heather Proctor hypothesised that the vibrations made by trembling male legs mimic the vibrations that females detect from swimming prey. This would trigger the female prey-detection responses, causing females to orient and then clutch at males, mediating courtship.[23][26] If this was true and males were exploiting female predation responses, then hungry females should be more receptive to male trembling. Proctor found that unfed captive females did orient and clutch at males significantly more than fed captive females did, consistent with the sensory exploitation hypothesis.[23] Other examples of the sensory-bias mechanism include traits in auklets,[27] wolf spiders,[28] and manakins.[29] Further experimental work is required to reach a fuller understanding of the prevalence and mechanisms of sensory bias.[30] Fisherian runaway and sexy-son hypothesis{{main|Fisherian runaway|Sexy son hypothesis}}This creates a positive feedback loop in which a particular trait is desired by a female and present in a male, and that desire for and presence of that particular trait are then reflected in their offspring.[20] If this mechanism is strong enough, it can lead to a type of self-reinforcing coevolution.[20] If runaway selection is strong enough, it may incur significant costs, such as increased visibility to predators and energetic costs to maintain the trait's full expression. Hence peacocks' extravagant feathers, or any number of lek mating displays. This model does not predict a genetic benefit; rather, the reward is more mates. In a study done on great reed warblers, models based on the polygyny threshold and sexy-son hypotheses predict that females should gain evolutionary advantage in either short-term or long-term in this mating system. Although the importance of female choice was demonstrated, the study did not support the hypotheses.{{citation needed|date= April 2015}} Other studies, such as those conducted on long-tailed widowbirds, have demonstrated the existence of female choice.{{citation needed|date= April 2015}} Here, females chose males with long tails, and even preferred those males with experimentally lengthened tails over shortened tails and those of naturally occurring length. Such a process shows how female choice could give rise to exaggerated sexual traits through Fisherian runaway selection. Indicator traits{{refimprove section|date=January 2017}}Indicator traits signal good overall quality of the individual. Traits perceived as attractive must reliably indicate broad genetic quality in order for selection to favor them and for preference to evolve. This is an example of indirect genetic benefits received by the choosy sex, because mating with such individuals will result in high-quality offspring. The indicator traits hypothesis is split into three highly related subtopics: the handicap theory of sexual selection, the good genes hypothesis, and the Hamilton-Zuk hypothesis. People rate the importance of certain traits differently when referring to their own or to others' ideal long-term partners. Research suggests that women consider traits indicating genetic fitness as more important for their own partner, while prioritising traits that provide benefits to others for their sister's ideal partner.[31] Indicator traits are condition-dependent and have associated costs. Therefore, individuals which can handle these costs well (cf. "I can do X [here, survive] with one hand tied behind my back") should be desired by the choosy sex for their superior genetic quality. This is known as the handicap theory of sexual selection.[32] The good genes hypothesis states that the choosy sex will mate with individuals who possess traits that signify overall genetic quality. In doing so, they gain an evolutionary advantage for their offspring through indirect benefit. The Hamilton-Zuk hypothesis posits that sexual ornaments are indicators of parasite- and disease-resistance.[33] To test this hypothesis, red jungle-fowl males were infected with a parasitic roundworm and monitored for growth and developmental changes. Female preference was also evaluated. The researchers found that parasites affected the development and final appearance of ornamental traits and that females preferred males who were not infected. This supports the idea that parasites are an important factor in sexual selection and mate choice.[34] One of many examples of indicator traits is the condition-dependent patch of red feathers around the face and shoulders of the male house finch. This patch varies in brightness among individuals because the pigments that produce the red color (carotenoids) are limited in the environment. Thus, males who have a high-quality diet will have brighter red plumage. In a manipulation experiment, female house finches were shown to prefer males with brighter red patches. Also, males with naturally brighter patches proved better fathers and exhibited higher offspring-feeding rates than duller males.[18] This study is heavily cited in the literature and it provides solid support for the indicator-traits hypothesis that is associated with direct benefits. Genetic compatibilityGenetic compatibility refers to how well the genes of two parents function together in their offspring. Choosing genetically compatible mates could result in optimally fit offspring and notably affect reproductive fitness. However, the genetic compatibility model is limited to specific traits due to complex genetic interactions (e.g. major histocompatibility complex in humans and mice). The choosy sex must know their own genotype as well as the genotypes of potential mates in order to select the appropriate partner.[35] This makes testing components of genetic compatibility difficult and controversial. A controversial but well-known experiment suggests that human females use body odor as an indicator of genetic compatibility. In this study, males were given a plain T-shirt to sleep in for two nights in order to provide a scent sample. College women were then asked to rate odors from several men, some with similar MHC (major histocompatibility complex) genes to their own and others with dissimilar genes. MHC genes code for receptors that identify foreign pathogens in the body so that the immune system may respond and destroy them. Since each different gene in the MHC codes for a different type of receptor, it is expected that females will benefit from mating with males who have more dissimilar MHC genes. This will ensure better resistance to parasites and disease in offspring. Researchers found that women tended to rate the odors higher if the male's genes were more dissimilar to their own. They concluded that the odors are influenced by the MHC and that they have consequences for mate choice in human populations today.[36] Similar to the humans of the odor-rating experiment, animals also choose mates based upon genetic compatibility as determined by evaluating the body odor of their potential mate(s). Some animals, such as mice, assess a mate's genetic compatibility based on their urine odor.[37] In an experiment studying three-spined sticklebacks, researchers found that females prefer to mate with males that share a greater diversity of major histocompatibility complex (MHC) and in addition possess a MHC halotype specific to fighting the common parasite Gyrodactylus salaris.[38] Mates that have MHC genes different from one another will be superior when reproducing with regard to parasite resistance, body condition and reproductive success and survival.[39] The genetic diversity of animals and life reproductive success (LRS) at the MHC level is optimal at intermediate levels rather than at its maximum,[40][41] despite MHC being one of the most polymorphic genes.[42] In a study, researchers discovered that mice heterozygous at all MHC loci were less resistant than mice homozygous at all loci to salmonella, so it appears disadvantageous to display many different MHC alleles due to the increased loss of T-cells,[43] which aid an organism's immune system and trigger its appropriate response.[44] MHC diversity may also correlate with MHC gene expression. As long as a heritable component exists in expression patterns, natural selection is able to act upon the trait. Therefore, gene expression for MHC genes might contribute to the natural selection processes of certain species and be in fact evolutionarily relevant. For example, in another study of three-spined sticklebacks, exposure to parasite species increased MHC class IIB expression by over 25%, proving that parasitic infection increases gene expression.[45] MHC diversity in vertebrates may also be generated by the recombination of alleles on the MHC gene.[46] Sex role reversal in animalsIn species where mating biases exist, females are typically the choosy sex because they provide a greater parental investment than males. However, there are some examples of sex role reversals where females must compete with each other for mating opportunities with males. Species that exhibit parental care after the birth of their offspring have the potential to overcome the sex differences in parental investment (the amount of energy that each parent contributes per offspring) and lead to a reversal in sex roles.[4] The following are examples of male mate choice (sex role reversal) across several taxa.
SpeciationFor many years it has been suggested that sexual isolation caused by differences in mating behaviours is a precursor for reproductive isolation (lack of gene flow), and consequently speciation, in nature.[53] Mate choice behaviours are thought to be important forces that can result in speciation events because the strength of selection for attractive traits is often very strong. Speciation by this method occurs when a preference for some sexual trait shifts and produces a pre-zygotic barrier (preventing fertilisation). These processes have been difficult to test until recently with advances in genetic modelling.[54] Speciation by sexual selection is gaining popularity in the literature with increasing theoretical and empirical studies. There is evidence of early speciation through mate preference in guppies. Guppies are located across several isolated streams in Trinidad and male colour patterns differ geographically. Female guppies have no coloration but their preference for these colour patterns also vary across locations. In a mate choice study, female guppies were shown to prefer males with colour patterns that are typical of their home stream.[55] This preference could result in reproductive isolation if two populations came into contact again. There is a similar trend shown in two species of the wood white butterfly, L. reali and L. sinapis. Female L. sinapis controls mate choice by engaging only in conspecific mating, while males attempt to mate with either species. This female mate choice has encouraged speciation of the two wood whites.[56] The black-throated blue warbler, a North American bird, is another example. Asymmetric recognition of local and non-local songs has been found between two populations of black-throated blue warblers in the United States, one in the northern United States (New Hampshire) and the other in the southern United States (North Carolina).[57] Males in the northern population respond strongly to the local male songs but relatively weakly to the non-local songs of southern males. In contrast, southern males respond equally to both local and non-local songs. The fact that northern males exhibit differential recognition indicates that northern females tend not to mate with "heterospecific" males from the south; thus it is not necessary for the northern males to respond strongly to the song from a southern challenger. A barrier to gene flow exists from South to North as a result of the female choice, which can eventually lead to speciation. Mate choice in humansIn humans, males and females differ in their strategies to acquire mates and focus on certain qualities. There are two main categories of strategies that both sex's utilize: short-term and long-term. Human mate choice depends on a variety of factors, such as ecology, demography, access to resources, rank/social standing, genes, and parasite stress. While there are a few common mating systems seen among humans, the amount of variation in mating strategies is relatively large. This is due to how humans evolved in diverse niches that were geographically and ecologically expansive. This diversity, as well as cultural practices and human consciousness, have all led to a large amount of variation in mating systems. Below are some of the overarching trends of female mate choice. Female mate choiceAlthough, in humans, both males and females are selective in terms of whom they decide to mate with, as is seen in nature, females exhibit even more mate choice selection than males. However, relative to most other animals, female and male mating strategies are found to be more similar to one another than they are different. According to Bateman's principle of Lifespan Reproductive Success (LRS), human females display the least variance of the two sexes in their LRS due to their high obligatory parental investment, that is a nine-month gestational period, as well as lactation following birth in order to feed offspring so that their brain can grow to the required size.[58] Human female sexual selection can be examined by looking at ways in which males and females are sexually dimorphic, especially in traits that serve little other evolutionary purpose. For example, male traits such as the presence of beards, overall lower voice pitch, and average greater height are thought to be sexually selected traits as they confer benefits to either the women selecting for them, or to their offspring. Experimentally, women have reported a preference for men with beards and lower voices.[59][60] Female mate choice hinges on many different coinciding male traits, and the trade-off between many of these traits must be assessed. The ultimate traits most salient to female human mate choice, however, are parental investment, resource provision and the provision of good genes to offspring. Many phenotypic traits are thought to be selected for as they act as an indication of one of these three major traits. The relative importance of these traits when considering mate selection differ depending on the type of mating arrangement females engage in. Human women typically employ long-term mating strategies when choosing a mate, however they also engage in short-term mating arrangements, so their mate choice preferences change depending on the function of the type of arrangement.[79] The type of mating strategy that females choose to engage in is also influenced by the type of environment or culture they are surrounded by. For example, in a patriarchal society where wealth and social status are inherited through the male lineage, monogamy is often practiced to assure certainty of paternal lineage. On the other hand, matriarchal societies often followed multiple mating and female cooperative breeding systems. Other environmental factors which influence mating strategies include access to available resources and risk/need for protection. {{citation needed|date=December 2018}} Short-term mating strategiesWomen do not always seek out and engage in long-term mating arrangements. This is evidenced by factors such as the evolved male tendency to seek out multiple sexual partners – a trait that could not have evolved if women were not also historically engaging in short-term arrangements[61] – and by the tendency of some women to pursue affairs outside of their long-term couple pairings. David Buss outlines several hypotheses as to the function of women's short-term mate choices:
Long-term mating strategiesWhile there has been evidence and research to support the existence of short term mating in women, it has nevertheless been shown that women prefer long term partners over short term mates. This preference is due to women's tendency to invest and require more energy for parental care. In long-term mating arrangements, women typically look for males who will provide a high level of parental investment, and who can provide resources to the woman or to her offspring.{{citation needed|date=May 2018}} The provision of economic resources, or the potential to acquire many economic resources is the most obvious cue towards the ability of a man to provide resources, and women in the United States have been shown experimentally to rate the importance of their partner's financial status more highly than men.[79] However, many other traits exist that may act as cues towards a man's ability to provide resources that have been sexually selected for in women's evolutionary history. These include older age – older males have had more time to accrue resources – industriousness, dependability and stability – if a woman's long-term partner is not emotionally stable or is not dependable then their provision of resources to her and her offspring are likely to be inconsistent. Additionally, the costs associated with an emotionally unstable partner such as jealousy and manipulation may outweigh the benefits associated with the resources they are able to provide.[79] Women's mate choice is not as straightforward as selecting a mate that displays all of her desired qualities. Often, potential mates will possess some qualities that are desirable and some that are not, so women must assess the relative costs and benefits of their potential partners' traits and 'trade off'. Women's mate choices will also be constrained by the context in which they are making them, resulting in conditional mate choices.[58] Some of the conditions that may influence female mate choice include the woman's own perceived attractiveness, the woman's personal resources, mate copying and parasite stress.[79] Male mate choiceGenerally, it is unusual for males within a species to be the choosy sex. There are many reasons for this. In humans, following sexual reproduction, the female is obliged to endure a nine-month pregnancy and childbirth.[62] This means that females naturally provide a greater parental investment to offspring, than males.[62][63] Human males have a larger quantity of gametes than females, which are replenished at a rate of approximately 12 million per hour. Conversely, female humans are born with a fixed amount of egg cells which are not restocked over the lifespan.[62] This provides males with a greater window of opportunity to mate and reproduce than females, hence females are usually more choosy. Despite not being the typically choosy gender, human males can be influenced by certain traits of females when making decisions about a potential mate:[63] Short-term mating strategiesWhen finding a short-term mate, males highly value women with sexual experience and physical attractiveness.[64] Men seeking short-term sexual relationships are likely to avoid women who are interested in commitment or require investment. Examples of short-term mating strategies in males:
Long-term mating strategiesAlthough from an evolutionary perspective women are usually the choosy sex, if a human male has the desire to reproduce he may seek certain qualities in a potential mate who could be the mother of his offspring. Humans have the ability to rely on biological signals of reproductive success and non-biological signals, such as the female's willingness to marry.[65] Unlike many animals, humans are not able to consciously display physical changes to their body when they are ready to mate, so they have to rely on other forms of communication before engaging in a consensual relationship. Males may look for:
Parasite Stress on Mate ChoiceThe parasite-stress theory, otherwise known as pathogen stress, states that parasites or diseases, stress the development of organisms, leading to a change in the appearance of their sexually attractive traits. In societies with a high prevalence of parasites or pathogens greater evolutionary advantage is derived from selecting for physical attractiveness/good looks of their potential mates, by the members of that society, compared to members of societies with a lower prevalence of parasites or diseases who put less emphasis on physical attractiveness. It indicates that physical attractiveness serves as a method by which humans can determine resistance to parasites, as it's believed that parasites and diseases would lower the ability to portray attractive traits of those who are suffering or have suffered from a disease, and would also limit the number of high-quality pathogen-resistant mates.[70] Hamilton-Zuk HypothesisThe Hamilton-Zuk hypothesis[71] (see Indicator traits) has greatly influenced research regarding human mate choice. The initial research showed that, within one species (brightly colored birds), there was greater sexual selection for males that had brighter plumage (feathers). In addition, Hamilton and Zuk showed that, between multiple species, there is greater selection for physical attributes in species under greater parasitic stress. In cultures where parasitic infection is especially high, members of that society use cues available to them to determine the physical health status of the potential mate.[72] Regardless of the wealth or ideology, the females in areas of a society that are more at risk or have higher rates of parasites and diseases will rate masculinity as a higher priority. Hamilton-Zuk Hypothesis in Humans
CriticismsGangested and Buss (2009) say that research indicates that parasite stress may have only influenced mate choice through females searching for "good genes" which show parasite resistance, in areas which have high prevalence of parasites.[81] John Cartwright also points out that females may be simply avoiding the transmission of parasites to themselves rather than it being them choosing males with good genes and that females look for more than just parasite-resistant genes.[72] MHC-Correlated Mate ChoiceMajor Histocompatibility Complex (MHC) or in humans, Human Leukocyte Antigen (HLA), produces proteins that are essential for immune system functioning. The genes of the MHC complex have extremely high variability, assumed to be a result of frequency-dependent parasite-driven selection and mate choice. This is believed to be so it promotes heterozygosity improving the chances of survival for the offspring. Odour preferencesIn experiments using rats, MHC-associated mate choice indicated that odor cues played a role.[82] In humans, there is conflicting evidence about whether men and women will rate the opposite genders odor as more pleasant, if the potential mate has MHC-dissimilar antigens to them.[83] However, women on contraceptive pills rate the odour of MHC-similar men as being more pleasant, it is unknown why women on contraceptive pills rate smell in this way. It was found that when processing MHC-similar smells were processed faster.[84] Contrary to these findings, other studies have found that there is no correlation between attraction and odor by testing males' odor preferences on women's odors. The study concludes that there is no correlation in attraction between men and women of dissimilar HLA proteins.[85] Research completed on a Southern Brazilian student population resulted in similar findings that found significant differences in the attraction ratings of giving to male sweat and MHC-difference.[86] Facial preferencesHuman facial preferences have been shown to correlate with both MHC-similarity and MHC-heterozygosity.[87] Research into MHC-similarity with regards to facial attractiveness is limited but research so far suggests that women, when thinking of long-term relationships, will choose males who are MHC-similar.[88] While facial asymmetry hasn't been correlated with MHC-heterozygosity, the perceived healthiness of skin appears to be.[89] It appears to be that only MHC-heterozygosity and no other genetic markers are correlated with facial attractiveness in males[90] and it has been shown that so far that there is no correlation that has been found in females.[91][92] Slightly different from facial attractiveness, facial masculinity is not shown to correlate with MHC heterogeneity (a common measure of immunocompetence).[93] CriticismsA review article published in June 2018 concluded that there is no correlation between HLA and mate choice.[94] In addition to assessing previous studies on HLA-Mate choice analysis to identify errors in their research methods(such as small population sizes), the study collects a larger set of data and re-runs the analysis of the previous studies. By using the larger data set to conduct analysis on 30 couples of European descent, they generate findings contrary to previous studies that identified significant divergence in the mate choice with accordance to HLA genotyping. Additional studies have been conducted simultaneously on African and European populations that only show correlation of MHC divergence in European but not African populations.[95] See also
References1. ^1 Bateson, Paul Patrick Gordon. “Mate Choice.” Mate Choice, Cambridge University Press, 1985 2. ^{{Cite journal |doi=10.1016/s0003-3472(05)80484-1 |title=Peahens prefer peacocks with elaborate trains |journal=Animal Behaviour |volume=41 |issue=2 |pages=323–331 |year=1991 |last1=Petrie |first1=Marion |last2=Tim |first2=Halliday |last3=Carolyn |first3=Sanders }} 3. ^{{cite journal |doi=10.1093/beheco/art045 |title=Eye for an eyespot: How iridescent plumage ocelli influence peacock mating success |journal=Behavioral Ecology |volume=24 |issue=5 |pages=1048–1057 |year=2013 |last1=Dakin |first1=Roslyn |last2=Montgomerie |first2=Robert }} 4. ^1 2 3 {{Cite book|title=Sexual Selection|last=Andersson|first=Malte|publisher=Princeton University Press|year=1994|isbn=|location=|pages=|quote=|via=}}{{page needed|date=December 2018}} 5. ^{{cite book |last=Halliday |first=T. R |year=1983 |chapter=The study of mate choice |pages=3–32 |chapterurl={{Google books|HY-onXFuTcoC|page=3|plainurl=yes}} |editor1-first=Patrick |editor1-last=Bateson |title=Mate Choice |isbn=978-0-521-27207-0 }} 6. ^Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London. 7. ^Miller, Geoffrey (2000). The mating mind: how sexual choice shaped the evolution of human nature, London, Heineman, {{ISBN|0-434-00741-2}} (also Doubleday, {{ISBN|0-385-49516-1}}) p.8 8. ^{{cite journal | last1 = Fisher | first1 = R. A. | year = 1915 | title = The evolution of sexual preference | url = | journal = Eugenic Review | volume = 7 | issue = 3| pages = 184–192 |pmc=2987134 | pmid=21259607}} 9. ^{{cite journal | last1 = Bateman | first1 = A. | year = 1948 | title = Intra-sexual selection in Drosophila | url = | journal = Heredity | volume = 2 | issue = Pt. 3| pages = 349–368 | doi = 10.1038/hdy.1948.21 | pmid = 18103134 }} 10. ^Williams, G.C. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, N.J.{{page needed|date=December 2018}} 11. ^Williams, G. C. 1975. Sex and evolution. Princeton University Press, Princeton, N.J.{{page needed|date=December 2018}} 12. ^{{cite book |last1=Trivers |first1=Robert L. |year=1972 |chapter=Parental Investment and Sexual Selection |pages=136–79 |citeseerx=10.1.1.100.4543 |editor1-first=Bernard Grant |editor1-last=Campbell |title=Sexual Selection and the Descent of Man, 1871–1971 |isbn=978-0-202-02005-1 }} 13. ^1 {{cite journal | last1 = Moller | first1 = A. | last2 = Jennions | first2 = M. | year = 2001 | title = How important are direct benefits of sexual selection? | url = | journal = Naturwissenschaften | volume = 88 | issue = 10| pages = 401–415 | doi = 10.1007/s001140100255 | pmid = 11729807 }} 14. ^1 {{cite journal | last1 = Kokko | first1 = H. | last2 = Brooks | first2 = R. | last3 = Jennions | first3 = M. | last4 = Morley | first4 = J. | year = 2003 | title = The evolution of mate choice and mating biases | url = | journal = Proceedings of the Royal Society B | volume = 270 | issue = 1515| pages = 653–664 | doi = 10.1098/rspb.2002.2235 | pmid = 12769467 | pmc = 1691281 }} 15. ^1 {{cite journal |last1= Dawkins |first1= Marian |last2= Guilford |first2= Tim |title= Sensory Bias and the Adaptiveness of Female Choice |journal= The American Naturalist |date= Nov 1996 |volume= 148 |issue= 5 |pages= 937–942 |jstor= 2463414|doi= 10.1086/285964}} 16. ^{{cite journal | last1 = Price | first1 = T. | last2 = Schluter | first2 = D. | last3 = Heckman | first3 = N. | year = 1993 | title = Sexual selection when the female directly benefits | url = | journal = Biological Journal of the Linnean Society | volume = 48 | issue = 3| pages = 187–211 | doi = 10.1111/j.1095-8312.1993.tb00887.x }} 17. ^Moller, A. P. 1994. Sexual selection and the barn swallow. Oxford University Press, Oxford.{{page needed|date=December 2018}} 18. ^1 {{cite journal |doi=10.1038/350337a0 |title=Plumage coloration is a sexually selected indicator of male quality |journal=Nature |volume=350 |issue=6316 |pages=337–339 |year=1991 |last1=Hill |first1=Geoffrey E. }} 19. ^{{cite journal |doi=10.1006/anbe.1997.0595 |title=Plumage brightness as an indicator of parental care in northern cardinals |journal=Animal Behaviour |volume=55 |pages=119–127 |year=1998 |last1=Linville |first1=Susan U. |last2=Breitwisch |first2=Randall |last3=Schilling |first3=AMY J. }} 20. ^1 2 3 {{cite journal |doi=10.1016/j.tree.2006.03.015 |pmid=16769428 |title=Sexual selection and mate choice |journal=Trends in Ecology & Evolution |volume=21 |issue=6 |pages=296–302 |year=2006 |last1=Andersson |first1=Malte |last2=Simmons |first2=Leigh W. |citeseerx=10.1.1.595.4050 }} 21. ^{{cite journal |doi=10.1016/S0169-5347(02)02595-8 |title=How sensory drive can promote speciation |journal=Trends in Ecology & Evolution |volume=17 |issue=12 |pages=571–577 |year=2002 |last1=Boughman |first1=Janette Wenrick }} 22. ^{{cite journal |doi=10.1098/rspb.2001.1891 |pmid=11886639 |pmc=1690917 |title=A possible non-sexual origin of mate preference: Are male guppies mimicking fruit? |journal=Proceedings of the Royal Society B: Biological Sciences |volume=269 |issue=1490 |pages=475–481 |year=2002 |last1=Rodd |first1=F. H. |last2=Hughes |first2=K. A. |last3=Grether |first3=G. F. |last4=Baril |first4=C. T. }} 23. ^1 2 3 4 5 6 {{cite journal |doi= 10.1016/S0003-3472(05)80242-8 |title= Courtship in the water mite Neumania papillator: Males capitalize on female adaptations for predation |journal= Animal Behaviour |volume= 42 |issue= 4 |pages= 589–598 |year= 1991 |last1= Proctor |first1= Heather C. }} 24. ^1 {{cite journal |doi=10.1016/S0003-3472(05)80300-8 |title=Sensory exploitation and the evolution of male mating behaviour: A cladistic test using water mites (Acari: Parasitengona) |journal=Animal Behaviour |volume=44 |issue=4 |pages=745–752 |year=1992 |last1=Proctor |first1=Heather C. }} 25. ^{{cite journal |doi=10.2307/2389961 |jstor=2389961 |title=Effect of Food Deprivation on Mate Searching and Spermatophore Production in Male Water Mites (Acari: Unionicolidae) |journal=Functional Ecology |volume=6 |issue=6 |pages=661–665 |last1=Proctor |first1=H. C. |year=1992 }} 26. ^{{cite book|last= Alcock|first= John|authorlink= John Alcock (behavioral ecologist)|title= Animal Behaviour: A Evolutionary Approach|edition= 10th|publisher= Sinauer|isbn= 978-0-87893-966-4 |pages= 70–72|date= 2013-07-01}} 27. ^{{cite journal |doi=10.1093/beheco/9.2.187 |title=Heterospecific mating preferences for a feather ornament in least auklets |journal=Behavioral Ecology |volume=9 |issue=2 |pages=187–192 |year=1998 |last1=Jones |first1=Ian L. |last2=Hunter |first2=Fiona M. }} 28. ^{{cite journal |doi=10.1006/anbe.1996.0162 |title=Female choice and pre-existing bias: Visual cues during courtship in two Schizocosawolf spiders (Araneae: Lycosidae) |journal=Animal Behaviour |volume=52 |pages=167–181 |year=1996 |last1=McClintock |first1=William J. |last2=Uetz |first2=George W. }} 29. ^{{cite journal |doi=10.1086/286014 |title=Phylogenetic Tests of Alternative Intersexual Selection Mechanisms: Trait Macroevolution in a Polygynous Clade (Aves: Pipridae) |journal=The American Naturalist |volume=149 |issue=4 |pages=668–692 |year=1997 |last1=Prum |first1=Richard O. }} 30. ^{{cite journal |doi=10.1086/444443 |pmid=16224700 |title=Sensory Bias as an Explanation for the Evolution of Mate Preferences |journal=The American Naturalist |volume=166 |issue=4 |pages=437–446 |year=2005 |last1=Fuller |first1=Rebecca C. |last2=Houle |first2=David |last3=Travis |first3=Joseph }} 31. ^{{cite journal |doi=10.1037/ebs0000060 |title=Sisterly love: Within-generation differences in ideal partner for sister and self |journal=Evolutionary Behavioral Sciences |volume=10 |pages=29–42 |year=2016 |last1=Biegler |first1=Robert |last2=Kennair |first2=Leif Edward Ottesen }} 32. ^{{cite journal |doi=10.1016/0022-5193(75)90111-3 |title=Mate selection—A selection for a handicap |journal=Journal of Theoretical Biology |volume=53 |pages=205–214 |year=1975 |last1=Zahavi |first1=Amotz |citeseerx=10.1.1.586.3819 }} 33. ^{{cite journal |doi=10.1126/science.7123238 |title=Heritable true fitness and bright birds: A role for parasites? |journal=Science |volume=218 |issue=4570 |pages=384–387 |year=1982 |last1=Hamilton |first1=W. |last2=Zuk |first2=M. }} 34. ^{{cite journal |doi=10.1093/icb/30.2.235 |title=Parasites and mate choice in red jungle fowl |journal=American Zoologist |volume=30 |issue=2 |pages=235–244 |year=1990 |last1=Zuk |first1=Marlene |last2=Thornhill |first2=Randy |last3=Ligon |first3=J. David |last4=Johnson |first4=Kristine }} 35. ^{{cite journal |doi=10.1016/j.tree.2005.02.005 |pmid=16701361 |title=Genetic compatibility and sexual selection |journal=Trends in Ecology & Evolution |volume=20 |issue=4 |pages=157–158 |year=2005 |last1=Puurtinen |first1=M. |last2=Ketola |first2=T. |last3=Kotiaho |first3=J. }} 36. ^{{cite journal |doi=10.1098/rspb.1995.0087 |pmid=7630893 |title=MHC-dependent mate preferences in humans |journal=Proceedings of the Royal Society of London. Series B, Biological Sciences |volume=260 |issue=1359 |pages=245–249 |year=1995 |last1=Wedekind |first1=Claus |last2=Seebeck |first2=Thomas |last3=Bettens |first3=Florence |last4=Paepke |first4=Alexander J. }} 37. ^{{cite journal |doi=10.1038/nature05404 |pmid=17108955 |title=Pheromonal communication in vertebrates |journal=Nature |volume=444 |issue=7117 |pages=308–315 |year=2006 |last1=Brennan |first1=Peter A. |last2=Zufall |first2=Frank }} 38. ^{{cite journal |doi=10.1111/j.1365-294X.2009.04243.x |pmid=19523111 |title=MHC-based mate choice combines good genes and maintenance of MHC polymorphism |journal=Molecular Ecology |volume=18 |issue=15 |pages=3316–3329 |year=2009 |last1=Eizaguirre |first1=C. |last2=Yeates |first2=S. E. |last3=Lenz |first3=T. L. |last4=Kalbe |first4=M. |last5=Milinski |first5=M. }} 39. ^{{cite journal |doi=10.1038/35104547 |pmid=11713527 |title=Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism |journal=Nature |volume=414 |issue=6861 |pages=300–302 |year=2001 |last1=Reusch |first1=Thorsten B. H. |last2=Häberli |first2=Michael A. |last3=Aeschlimann |first3=Peter B. |last4=Milinski |first4=Manfred }} 40. ^{{cite journal |doi=10.1098/rspb.2008.1466 |pmid=19033141 |pmc=2664370 |title=Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity |journal=Proceedings of the Royal Society B: Biological Sciences |volume=276 |issue=1658 |pages=925–934 |year=2009 |last1=Kalbe |first1=M. |last2=Eizaguirre |first2=C. |last3=Dankert |first3=I. |last4=Reusch |first4=T. B.H |last5=Sommerfeld |first5=R. D. |last6=Wegner |first6=K. M. |last7=Milinski |first7=M. }} 41. ^{{cite journal |doi=10.1073/pnas.89.22.10896 |pmid=1438295 |pmc=50449 |jstor=2362018 |title=The optimal number of major histocompatibility complex molecules in an individual |journal=Proceedings of the National Academy of Sciences |volume=89 |issue=22 |pages=10896–9 |year=1992 |last1=Nowak |first1=M. A. |last2=Tarczy-Hornoch |first2=K. |last3=Austyn |first3=J. M. }} 42. ^{{cite journal |doi=10.1098/rstb.2008.0174 |pmid=18926972 |pmc=2666699 |title=Does intra-individual major histocompatibility complex diversity keep a golden mean? |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=364 |issue=1513 |pages=117–128 |year=2009 |last1=Woelfing |first1=B. |last2=Traulsen |first2=A. |last3=Milinski |first3=M. |last4=Boehm |first4=T. }} 43. ^{{cite journal |doi=10.1534/genetics.107.074815 |pmid=17603099 |pmc=1950649 |title=Major Histocompatibility Complex Heterozygosity Reduces Fitness in Experimentally Infected Mice |journal=Genetics |volume=176 |issue=4 |pages=2501–2508 |year=2007 |last1=Ilmonen |first1=P. |last2=Penn |first2=D. J. |last3=Damjanovich |first3=K. |last4=Morrison |first4=L. |last5=Ghotbi |first5=L. |last6=Potts |first6=W. K. }} 44. ^{{cite journal |doi=10.1038/hdy.2010.173 |pmid=21245894 |pmc=3178406 |title=MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris |journal=Heredity |volume=107 |issue=2 |pages=115–126 |year=2011 |last1=Schad |first1=J. |last2=Dechmann |first2=D K N. |last3=Voigt |first3=C. C. |last4=Sommer |first4=S. }} 45. ^{{cite journal |doi=10.1111/j.1365-294x.2006.02855.x |pmid=16599974 |title=Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks |journal=Molecular Ecology |volume=15 |issue=4 |pages=1153–1164 |year=2006 |last1=Wegner |first1=K. M. |last2=Kalbe |first2=M. |last3=Rauch |first3=G. |last4=Kurtz |first4=J. |last5=Schaschl |first5=H. |last6=Reusch |first6=T. B. H. }} 46. ^{{cite journal |doi=10.1038/sj.hdy.6800892 |pmid=16941019 |title=Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates |journal=Heredity |volume=97 |issue=6 |pages=427–437 |year=2006 |last1=Schaschl |first1=H. |last2=Wandeler |first2=P. |last3=Suchentrunk |first3=F. |last4=Obexer-Ruff |first4=G. |last5=Goodman |first5=S. J. }} 47. ^{{cite journal |last2=Anhesjo|first2=I. |last3=Berglund|first3=A. |last4=Rosenqvist |first4=G.|year=1992 |title=Pipefish and seahorses: Are they all sex role reversed? |journal=Trends in Ecology and Evolution|volume=7 |issue=7|pages=237–241 |doi=10.1016/0169-5347(92)90052-D |pmid=21236017|last1=Vincent|first1=A.}} 48. ^{{cite journal |year=1978 |title=Courtship and parental behavior in a Panamanian poison-arrow frog (Dendrobates auratus) |journal=Herpetologica |volume=34 |issue=2 |pages=148–155 |jstor=3891667 |last1=Wells |first1=K.}} 49. ^{{cite journal |last2=Wrege |first2=P. H. |year=2005 |title=Sex dimorphism, intrasexual competition and sexual selection in wattled jacana, a sex role reversed shore bird in Panama |journal=The Auk |volume=121 |issue=2 |pages=391–403 |doi=10.1642/0004-8038(2004)121[0391:sdicas]2.0.co;2 |jstor=4090403 |last1=Emlen |first1=S. T.}} 50. ^{{cite journal |last2=Pinxten |first2=R. |year=2000 |title=Sex-role reversal in vertebrates: behavioral and endocrinological accounts |journal=Behavioural Processes|volume=51 |issue=1–3 |pages=135–147 |doi=10.1016/S0376-6357(00)00124-8 |pmid=11074317 |last1=Eens |first1=M.}} 51. ^{{cite journal |last2=Frank |first2=L. G. |last3=Davidson |first3=J. M. |last4=Smith |first4=E. R.|last5=Siiteri|first5=P. K. |year=1987 |title=Androstenedione may organize or activate sex-reversed traits in female spotted hyenas |journal=PNAS |volume=84 |issue=10 |pages=3444–3447 |doi=10.1073/pnas.84.10.3444 |pmc=304887 |pmid=3472215 |last1=Glickman |first1=S. E.}} 52. ^{{cite journal |year=1986|title=Social organization of the spotted hyena II: Dominance and reproduction |journal=Animal Behaviour |volume=35 |issue=5 |pages=1510–1527 |doi=10.1016/S0003-3472(86)80221-4|last1=Frank|first1=L. G.}} 53. ^Mayr, E. 1942. Systematics and Origin of Species, Belknap Press 54. ^{{cite journal | doi=10.1146/annurev.ecolsys.38.091206.095733 | title=Sexual Selection and Speciation | year=2007 | last1=Ritchie | first1=Michael G. | journal=Annual Review of Ecology, Evolution, and Systematics | volume=38 | pages=79–102 }} 55. ^{{cite journal | last1=Endler | first1=J. A. | last2=Houde | first2=A. E. | year=1995 | title=Geographic variation in female preferences for male traits in Poecelia reticulata | url=| journal=Evolution | volume=49 | issue=3| pages=456–468 | doi=10.2307/2410270 | pmid=28565093 | jstor=2410270 }} 56. ^{{cite journal |last1=Friberg |first1=Magne |last2=Wiklund |first2=Christer |title=Host plant preference and performance of the sibling species of butterflies Leptidea sinapis and Leptidea reali: a test of the trade-off hypothesis for food specialisation |journal=Oecologia |volume=159 |issue=1 |year=2008 |pages=127–137 |doi=10.1007/s00442-008-1206-8|pmid=19002503 }} 57. ^{{cite journal |last=Colbeck |first=G.J. |author2=Sillett, T.S. |author3=Webster, M.S. |title=Asymmetric discrimination of geographical variation in song in a migratory passerine |journal=Animal Behaviour |year=2010 |volume=80 |issue=2 |pages=311–318 |doi=10.1016/j.anbehav.2010.05.013}} 58. ^1 {{Cite book|title=Human Evolutionary Psychology|last=Barrett|first=Louise|last2=Dunbar|first2=Robin|last3=Lycett|first3=John|publisher=Palgrave|year=2002|isbn=978-0-333-72558-0|location=Hampshire|pages=|quote=|via=}}{{page needed|date=December 2018}} 59. ^{{cite journal |doi=10.1006/anbe.2000.1523 |pmid=11124875 |title=Men's voices and women's choices |journal=Animal Behaviour |volume=60 |issue=6 |pages=773–780 |year=2000 |last1=Collins |first1=Sarah A. }} 60. ^{{cite journal |doi=10.1016/0162-3095(95)00068-2 |title=The evolutionary psychology of physical attractiveness: Sexual selection and human morphology |journal=Ethology and Sociobiology |volume=16 |issue=5 |pages=395–424 |year=1995 |last1=Barber |first1=Nigel }} 61. ^B. A. Scelza, "Choosy But Not Chaste: Multiple Mating in Human Females".2013 62. ^1 2 3 4 5 6 7 8 9 10 {{Cite book|title=Evolutionary Psychology, The New Science of Mind|last=Buss|first=David|publisher=Routledge|year=2016|isbn=978-0-205-99212-6|location=New York|pages=103–104|quote=|via=}} 63. ^1 {{cite journal |doi=10.1016/j.tree.2011.07.012 |pmid=21890230 |title=The evolution and significance of male mate choice |journal=Trends in Ecology & Evolution |volume=26 |issue=12 |pages=647–654 |year=2011 |last1=Edward |first1=Dominic A. |last2=Chapman |first2=Tracey }} 64. ^1 2 3 4 {{Cite book|title=Evolutionary Psychology, The New Science of Mind|last=Buss|first=David|publisher=Routledge|year=2016|isbn=978-0-205-99212-6|location=New York|pages=163–176|quote=|via=}} 65. ^1 2 3 4 5 6 7 {{Cite book|title=Evolutionary Psychology, The New Science of Mind|last=Buss|first=David|publisher=Routledge|year=2016|isbn=978-0-205-99212-6|location=New York|pages=133–162|quote=|via=}} 66. ^{{cite journal |doi=10.1007/s10508-015-0516-2 |pmid=25828990 |title=The Role of Breast Size and Areolar Pigmentation in Perceptions of Women's Sexual Attractiveness, Reproductive Health, Sexual Maturity, Maternal Nurturing Abilities, and Age |journal=Archives of Sexual Behavior |volume=44 |issue=6 |pages=1685–1695 |year=2015 |last1=Dixson |first1=Barnaby J. |last2=Duncan |first2=Melanie |last3=Dixson |first3=Alan F. }} 67. ^{{cite journal |last1=Antfolk |first1=Jan |year=2017 |title=Age Limits: Men's and Women's Youngest and Oldest Considered and Actual Sex Partners |journal=Evolutionary Psychology |volume=15 |issue=1 |pages=147470491769040 |doi=10.1177/1474704917690401|pmid=28127998 }} 68. ^{{cite journal |doi=10.1016/j.evolhumbehav.2014.09.003 |title=Women's and men's sexual preferences and activities with respect to the partner's age: Evidence for female choice |journal=Evolution and Human Behavior |volume=36 |pages=73–79 |year=2015 |last1=Antfolk |first1=Jan |last2=Salo |first2=Benny |last3=Alanko |first3=Katarina |last4=Bergen |first4=Emilia |last5=Corander |first5=Jukka |last6=Sandnabba |first6=N. Kenneth |last7=Santtila |first7=Pekka }} 69. ^{{cite journal |last1=Rowland |first1=Hannah |last2=Burriss |first2=Robert |title=Human color in mate choice and competition |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=372 |issue=1724 |pages=20160350 |doi=10.1098/rstb.2016.0350 |pmid=28533465 |pmc=5444069 |year=2017 }} 70. ^{{cite journal |last1=Fincher |first1=Corey |last2=Thornhill |first2=Randy |last3=Murray |first3=Damian |last4=Schaller |first4=Mark |title=Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism |journal=Royal Society Publishing B |date=7 June 2018 |volume=275 |issue=1640 |pages=1279–1285 |doi=10.1098/rspb.2008.0094 |pmid=18302996 |pmc=2602680 }} 71. ^{{cite journal |last1=Hamilton |first1=William |last2=Zuk |first2=Marlene |title=Heritable True Fitness and Bright Birds: A Role for Parasites? |journal=Science |volume=218 |issue=4570 |pages=384–387 |jstor=1688879 |year=1982 }} 72. ^1 {{cite book |last1=Cartwright |first1=John |title=Evolution and human behavior: Darwinian perspectives on human nature |date=2000 |publisher=Macmillan |location=Basingstoke |isbn=978-0-333-71457-7 |pages=146–147 }} 73. ^{{cite journal |last1=Ludvico |first1=L.R. |last2=Kurland |first2=J.A. |title=Symbolic or not-so symbolic wounds: The behavioral ecology of human scarification |journal=Ethology and Sociobiology |date=1995 |volume=16 |issue=2 |pages=155–172 |doi=10.1016/0162-3095(94)00075-i }} 74. ^{{cite journal |last1=Singh |first1=Devendra |last2=Mathew |first2=Bronstad |title=Sex differences in the anatomical locations of human body scarification and tattooing as a function of pathogen prevalence |journal=Evolution and Human Behavior |volume=18 |issue=6 |pages=403–416 |doi=10.1016/S1090-5138(97)00089-5 |year=1997 }} 75. ^{{cite journal |last1=DeBruine |first1=Lisa M. |last2=Jones |first2=Benedict C. |last3=Crawford |first3=John R. |last4=Welling |first4=Lisa L. M. |last5=Little |first5=Anthony C. |title=The health of a nation predicts their mate preferences: cross-cultural variation in women's preferences for masculinized male faces |journal=Proceedings of the Royal Society B |date=2010 |volume=277 |issue=1692 |pages=2405–2410 |doi=10.1098/rspb.2009.2184 |pmid=20236978 |pmc=2894896 }} 76. ^{{cite journal |last1=Jones |first1=Benedict C. |last2=Feinberg |first2=David R. |last3=Watkins |first3=Christopher D. |last4=Fincher |first4=Corey L. |last5=Little |first5=Anthony C. |last6=DeBruine |first6=Lisa M. |title=Pathogen disgust predicts women's preferences for masculinity in men's voices, faces, and bodies |journal=Behavioral Ecology |date=2012 |volume=24 |issue=2 |pages=373–379 |doi=10.1093/beheco/ars173 }} 77. ^{{cite journal|last1=Thornhill|first1=R|last2=Gangestad|first2=S. W.|last3=Scheib|first3=J. E.|title=Facial attractiveness, symmetry and cues of good genes.|journal=Proceedings of the Royal Society B|date=1999|volume=266|issue=1431|pages=1913–1917|doi=10.1098/rspb.1999.0866|pmid=10535106|pmc=1690211}} 78. ^{{cite journal|last1=DeBruine|first1=Lisa M.|last2=Little|first2=Anthony C.|last3=Jones|first3=Benedict C.|title=Extending parasite-stress theory to variation in human mate preferences|journal=Behavioral and Brain Sciences|date=2012|volume=35|issue=2|pages=86–87|doi=10.1017/s0140525x11000987|pmid=22289354|hdl=1893/17923}} 79. ^{{cite journal|last1=White|first1=D. R.|last2=Burton|first2=M. L.|title=Causes of polygyny: Ecology, economy, kinship, and warfare|journal=American Anthropologist|date=1988|volume=90|issue=4|pages=871–887|doi=10.1525/aa.1988.90.4.02a00060|url=http://www.escholarship.org/uc/item/0468q4xq}} 80. ^{{cite journal|last1=Low|first1=Bobbi S.|title=Marriage Systems and Pathogen Stress in Human Societies|journal=American Zoologist|date=1990|volume=30|issue=2|pages=325–339|doi=10.1093/icb/30.2.325}} 81. ^{{cite journal|last1=Gangestad|first1=Steven W.|last2=Buss|first2=David M.|title=Pathogen prevalence and human mate preferences|journal=Ethology and Sociobiology|date=1993|volume=14|issue=2|pages=89–96|doi=10.1016/0162-3095(93)90009-7|citeseerx=10.1.1.496.1320}} 82. ^{{cite journal|last1=Yamazaki|first1=K.|last2=Yamaguchi|first2=M.|last3=Baranoski|first3=L.|last4=Bard|first4=J.|last5=Boyse|first5=E. A.|last6=Thomas|first6=L.|title=Recognition among mice. Evidence from the use of a Y-maze differentially scented by congenic mice of different major histocompatibility types|journal=Journal of Experimental Medicine|date=1979|volume=150|issue=4|pages=755–760|doi=10.1084/jem.150.4.755}} 83. ^{{cite journal|last1=Wedekind|first1=C.|last2=Fu¨ri|first2=S.|title=Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity?|journal=Proceedings of the Royal Society B|date=1997|volume=264|issue=1387|pages=1471–1479|doi=10.1098/rspb.1997.0204|pmid=9364787|pmc=1688704}} 84. ^{{cite journal|last1=Pause|first1=B. M.|last2=Krauel|first2=K.|last3=Schraders|first3=C.|last4=Sojka|first4=B.|last5=Westphal|first5=E.|last6=Muller-Ruchholtz|first6=W.|last7=Ferstl|first7=R.|title=The human brain is a detector of chemosensorily transmitted HLA-class I-similarity in same- and opposite-sex relations|journal=Proceedings of the Royal Society B|date=2005|volume=273|issue=1585|pages=471–478|doi=10.1098/rspb.2005.3342|pmid=16615215|pmc=1560206}} 85. ^Probst, F., Fischbacher, U., Lobmaier, J. S., Wirthmüller, U., & Knoch, D. (2017). Men's preferences for women's body odours are not associated with human leucocyte antigen. Proceedings. Biological sciences, 284(1864), 20171830. 86. ^{{cite journal |last1=Santos |first1=Pablo |last2=Schinemann |first2=Juliano |last3=Gabardo |first3=Juarez |last4=Bicalho |first4=Maria |title=New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students |journal=Hormones and Behavior |volume=47 |issue=4 |pages=384–388 |doi=10.1016/j.yhbeh.2004.11.005 |pmid=15777804 |year=2005 }} 87. ^{{cite journal|last1=Havlicek|first1=Jan|last2=Roberts|first2=S. Craig|title=MHC-correlated mate choice in humans: A review|journal=Psychoneuroendocrinology|date=2009|volume=34|issue=4|pages=497–512|doi=10.1016/j.psyneuen.2008.10.007|pmid=19054623}} 88. ^{{cite journal|last1=Roberts|first1=S. C.|last2=Little|first2=A. C.|last3=Gosling|first3=L. M.|last4=Jones|first4=B. C.|last5=Perrett|first5=D. I.|last6=Carter|first6=V.|last7=Petrie|first7=M|title=MHC-assortative facial preferences in humans|journal=Biology Letters|date=2005|volume=1|issue=4|pages=400–403|doi=10.1098/rsbl.2005.0343|pmid=17148217|pmc=1626373}} 89. ^{{cite journal|last1=Roberts|first1=S. C.|last2=Little|first2=A. C.|last3=Gosling|first3=L. M.|last4=Perrett|first4=D. I.|last5=Carter|first5=V.|last6=Jones|first6=B. C.|last7=Penton-Voak|first7=I. S.|last8=Petrie|first8=M.|title=MHC-heterozygosity and human facial attractiveness|journal=Evolution and Human Behavior|date=2005|volume=26|issue=3|pages=213–226|doi=10.1016/j.evolhumbehav.2004.09.002}} 90. ^{{cite journal|last1=Lie|first1=H.|last2=Simmons|first2=L.|last3=Rhodes|first3=G.|title=Genetic diversity revealed in human faces|journal=Evolution|date=2008|volume=62|issue=10|pages=2473–2486|doi=10.1111/j.1558-5646.2008.00478.x|pmid=18691260}} 91. ^{{cite journal|last1=Thornhill|first1=R.|last2=Gangestad|first2=S. W.|last3=Miller|first3=R.|last4=Scheyd|first4=G.|last5=McCollough|first5=J. K.|last6=Franklin|first6=M.|title=Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women|journal=Behavioral Ecology|date=2003|volume=14|issue=5|pages=668–678|doi=10.1093/beheco/arg043}} 92. ^{{cite journal|last1=Coetzee|first1=V.|last2=Barrett|first2=L.|last3=Greeff|first3=J. M.|last4=Henzi|first4=S. P.|last5=Perrett|first5=D. I.|last6=Wadee|first6=A. A.|title=Common HLA alleles associated with health, but not with facial attractiveness|journal=PLOS One|date=2007|volume=2|issue=7|page=e640|doi=10.1371/journal.pone.0000640|pmid=17653267|pmc=1919430}} 93. ^{{cite journal |last1=Zaidi |first1=Arslan |last2=White |first2=Julie |last3=Mattern |first3=Brooke |last4=Liebowitz |first4=Corey |last5=Puts |first5=David |last6=Claes |first6=Peter |last7=Shriver |first7=Mark |title=Facial masculinity does not appear to be a condition-dependent male ornament in humans and does not reflect MHC heterozygosity |doi=10.1101/322255 |year=2018 }} 94. ^{{cite journal |last1=Stancu |first1=Mircea |last2=Kloosterman |first2=Wigard |last3=Pulit |first3=Sara |title=No evidence that mate choice in humans is dependent on the MHC |doi=10.1101/339028 |year=2018 }} 95. ^{{cite journal |last1=Chaix |first1=Raphaelle |last2=Cao |first2=Chen |last3=Donnelley |first3=Peter |title=Is Mate Choice in Humans MHC-Dependent? |journal=PLOS Genetics |volume=4 |issue=9 |pages=e1000184 |doi=10.1371/journal.pgen.1000184 |pmid=18787687 |pmc=2519788 |year=2008 }} External links
2 : Evolutionary biology|Sexual selection |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。