词条 | Milnor conjecture (topology) |
释义 |
In knot theory, the Milnor conjecture says that the slice genus of the torus knot is It is in a similar vein to the Thom conjecture. It was first proved by gauge theoretic methods by Peter Kronheimer and Tomasz Mrowka.[1] Jacob Rasmussen later gave a purely combinatorial proof using Khovanov homology, by means of the s-invariant.[2] References1. ^{{citation|title=Gauge theory for embedded surfaces, I|first1=P. B.|last1=Kronheimer|authorlink1=Peter Kronheimer|first2=T. S.|last2=Mrowka|journal=Topology|volume=32|issue=4|year=1993|pages=773–826|doi=10.1016/0040-9383(93)90051-V}}. {{knottheory-stub}}2. ^{{cite arxiv|eprint=math.GT/0402131 |title=Khovanov homology and the slice genus|first=Jacob A.|last=Rasmussen|year=2004}}. 4 : Geometric topology|Knot theory|4-manifolds|Conjectures that have been proved |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。