请输入您要查询的百科知识:

 

词条 Mir-199 microRNA precursor
释义

  1. Origin and evolution of miR-199

  2. Targets and expression of miR-199

  3. Implication of miR-199 in skeletogenesis

  4. Clinical relevance of miR-199

  5. References

  6. Further reading

  7. External links

{{Infobox rfam
| Name = mir-199 microRNA precursor
| image = RF00144.jpg
| width =
| caption = Predicted secondary structure and sequence conservation of mir-199
| Symbol = mir-199
| AltSymbols =
| Rfam = RF00144
| miRBase = MI0000242
| miRBase_family = MIPF0000040
| RNA_type = Gene; miRNA
| Tax_domain = Eukaryota
| GO = {{GO|0035195}} {{GO|0035068}}
| SO = {{SO|0001244}}
| CAS_number =
| EntrezGene =
| HGNCid =
| OMIM =
| PDB =
| RefSeq =
| Chromosome =
| Arm =
| Band =
| LocusSupplementaryData =
}}

The miR-199 microRNA precursor is a short non-coding RNA

gene involved in gene regulation.

miR-199 genes have now been predicted or experimentally confirmed in mouse, human and a further 21 other species.[1][2][3][4] microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. The mature products are thought to have regulatory roles through complementarity to mRNA.[5]

Origin and evolution of miR-199

miR-199 has been shown to be a vertebrate specific miR family that emerge at the origin of the vertebrate lineage [6] Three paralogs of miR-199 can usually be found in non-teleost vertebrate species and 4 to 5 copies in the teleost species. All miR-199 genes are located on opposite strand of orthologous intron of Dynamin genes. Within Dynamin3 gene (Dnm3), miR-199 is associated with miR-214 and both miRs are transcribed together as a common primary transcript, demonstrated in mouse, human and zebrafish.[7]

Targets and expression of miR-199

miR-199 has been shown to be implicated in a wide variety of cellular and developmental mechanisms such as various cancer development and progression, cardiomyocytes protection or skeletal formation.[8]

Using microarray and immunoblotting analyses it has been shown that miR-199a* targets the Met proto-oncogene.[9]

MicroRNA hsa-miR-199a is a regulator of IκB kinase-β (IKKβ) expression.[10]

Using TaqMan real-time quantitative PCR array methods, miRNA expression has been profiled. miR-199a, one of the most significantly overexpressed in invasive squamous cell carcinomas (ISCCs), was evaluated by transfecting cervical cancer cells (SiHa and ME-180) with anti-miR-199a oligonucleotides and the cell viability assessed.

mirR-199a*, mir199a and mirR-199b were significantly overexpressed in ISCCs.[11]

Implication of miR-199 in skeletogenesis

miR-199, along with its cluster mate MiR-214, has been shown to be implicated in skeleton formation. In mice, miR-199 is expressed in perichondrial cells, periarticular chondrocytes, tracheal cartilage, limb mesenchyme, and most tissues in the upper and lower jaw.[7] In zebrafish, miR-199 is expressed in the developing notochord and in all tissues surrounding developing skeletal elements.[6] Comparative miRNA array led to the isolation of several Bone Morphogenic Protein 2 (BMP2)-responsive miRNAs. Among them, miR-199a* is of particular interest, because it was reported to be specifically expressed in the skeletal system and was shown to inhibit chondrogenesis by down-regulation of Smad1, a major regulator of bone and cartilage formation and development.[12] Also, Twist-1, whichis a major actor in skeleton formation, regulates miR-199 and miR-214 cluster expression in mouse.[13] Furthermore, miR199-214 cluster deletion in mouse lead to skeletal development abnormalities including craniofacial defects, neural arch and spinous processes malformations, and osteopenia.[14]

Clinical relevance of miR-199

Alcoholic liver disease is a common medical consequence of chronic alcohol abuse. Activation of hypoxia-Inducible Factor-1α (HIF-1α) is an indicator of hypoxia. Endothelin-1 (ET-1) is a protein that constricts blood vessels and raises blood pressure. It has been shown that ethanol-induced miR-199 down-regulation may contribute to augmented HIF-1α and ET-1 expression.[15]

References

1. ^{{cite journal |doi=10.1261/rna.2146903 |title=New microRNAs from mouse and human |year=2003 |last1=Lagos-Quintana |first1=M. |journal=RNA |volume=9 |issue=2 |pages=175–9 |pmid=12554859 |last2=Rauhut |first2=R |last3=Meyer |first3=J |last4=Borkhardt |first4=A |last5=Tuschl |first5=T |pmc=1370382}}
2. ^{{cite journal |doi=10.1016/S1534-5807(03)00227-2 |title=Embryonic Stem Cell-Specific MicroRNAs |year=2003 |last1=Houbaviy |first1=Hristo B |last2=Murray |first2=Michael F |last3=Sharp |first3=Phillip A |journal=Developmental Cell |volume=5 |issue=2 |pages=351–8 |pmid=12919684}}
3. ^{{cite journal |doi=10.1261/rna.2141503 |title=Numerous microRNPs in neuronal cells containing novel microRNAs |year=2003 |last1=Dostie |first1=J. |journal=RNA |volume=9 |issue=2 |pages=180–6 |pmid=12554860 |last2=Mourelatos |first2=Z |last3=Yang |first3=M |last4=Sharma |first4=A |last5=Dreyfuss |first5=G |pmc=1370383}}
4. ^MIPF0000040{{dead link|date=February 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
5. ^{{cite journal |doi=10.1016/S0092-8674(01)00616-X |title=MicroRNAs |year=2001 |last1=Ambros |first1=Victor |journal=Cell |volume=107 |issue=7 |pages=823–6 |pmid=11779458}}
6. ^Desvignes, T; Postlethwait JH. 2013. Evolution of the miR199-214 cluster and vertebrate skeletal development. Submitted to RNA Biology.{{vs|date=August 2013}}
7. ^{{cite journal |doi=10.1016/j.ygeno.2005.02.001 |title=A conserved noncoding intronic transcript at the mouse Dnm3 locus |year=2005 |last1=Loebel |first1=David A.F. |last2=Tsoi |first2=Bonny |last3=Wong |first3=Nicole |last4=Tam |first4=Patrick P.L. |journal=Genomics |volume=85 |issue=6 |pages=782–9 |pmid=15885504}}
8. ^{{cite journal |doi=10.3390/ijms13078449 |title=Flexible and Versatile as a Chameleon—Sophisticated Functions of microRNA-199a |year=2012 |last1=Gu |first1=Shen |last2=Chan |first2=Wai-Yee |journal=International Journal of Molecular Sciences |volume=13 |issue=12 |pages=8449–66 |pmid=22942713 |pmc=3430244}}
9. ^{{cite journal |doi=10.1074/jbc.M800186200 |title=MicroRNA miR-199a* Regulates the MET Proto-oncogene and the Downstream Extracellular Signal-regulated Kinase 2 (ERK2) |year=2008 |last1=Kim |first1=Seonhoe |last2=Lee |first2=Ui Jin |last3=Kim |first3=Mi Na |last4=Lee |first4=Eun-Ju |last5=Kim |first5=Ji Young |last6=Lee |first6=Mi Young |last7=Choung |first7=Sorim |last8=Kim |first8=Young Joo |last9=Choi |first9=Young-Chul |journal=Journal of Biological Chemistry |volume=283 |issue=26 |pages=18158–66 |pmid=18456660 }}
10. ^{{cite journal |doi=10.1038/onc.2008.112 |title=Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells |year=2008 |last1=Chen |first1=R |last2=Alvero |first2=A B |last3=Silasi |first3=D A |last4=Kelly |first4=M G |last5=Fest |first5=S |last6=Visintin |first6=I |last7=Leiser |first7=A |last8=Schwartz |first8=P E |last9=Rutherford |first9=T |last10=Mor |first10=G |journal=Oncogene |volume=27 |issue=34 |pages=4712–23 |pmid=18408758 |pmc=3041589}}
11. ^{{cite journal |doi=10.1158/1078-0432.CCR-07-1231 |title=Altered MicroRNA Expression in Cervical Carcinomas |year=2008 |last1=Lee |first1=Jeong-Won |last2=Choi |first2=Chel Hun |last3=Choi |first3=Jung-Joo |last4=Park |first4=Young-Ae |last5=Kim |first5=Seung-Jun |last6=Hwang |first6=Seung Yong |last7=Kim |first7=Woo Young |last8=Kim |first8=Tae-Joong |last9=Lee |first9=Je-Ho |last10=Kim |first10=Byoung-Gie |last11=Bae |first11=Duk-Soo |journal=Clinical Cancer Research |volume=14 |issue=9 |pages=2535–42 |pmid=18451214}}
12. ^{{cite journal |doi=10.1074/jbc.M807709200 |title=MiR-199a*, a Bone Morphogenic Protein 2-responsive MicroRNA, Regulates Chondrogenesis via Direct Targeting to Smad1 |year=2008 |last1=Lin |first1=Edward A. |last2=Kong |first2=Li |last3=Bai |first3=Xiao-Hui |last4=Luan |first4=Yi |last5=Liu |first5=Chuan-ju |journal=Journal of Biological Chemistry |volume=284 |issue=17 |pages=11326–35 |pmid=19251704 |pmc=2670138}}
13. ^{{cite journal |doi=10.1093/nar/gkn920 |title=Twist-1 regulates the miR-199a/214 cluster during development |year=2008 |last1=Lee |first1=Youn-Bok |last2=Bantounas |first2=Ioannis |last3=Lee |first3=Do-Young |last4=Phylactou |first4=Leonidas |last5=Caldwell |first5=Maeve A. |last6=Uney |first6=James B. |journal=Nucleic Acids Research |volume=37 |pages=123–8 |pmid=19029138 |issue=1 |pmc=2615617}}
14. ^{{cite journal |doi=10.1002/ajmg.a.34049 |title=Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25 |year=2011 |last1=Burkardt |first1=Deepika D'Cunha |last2=Rosenfeld |first2=Jill A. |last3=Helgeson |first3=Maria L. |last4=Angle |first4=Brad |last5=Banks |first5=Valerie |last6=Smith |first6=Wendy E. |last7=Gripp |first7=Karen W. |last8=Moline |first8=Jessica |last9=Moran |first9=Rocio T. |last10=Niyazov |first10=Dmitriy M. |last11=Stevens |first11=Cathy A. |last12=Zackai |first12=Elaine |last13=Lebel |first13=Robert Roger |last14=Ashley |first14=Douglas G. |last15=Kramer |first15=Nancy |last16=Lachman |first16=Ralph S. |last17=Graham |first17=John M. |journal=American Journal of Medical Genetics Part A |volume=155 |issue=6 |pages=1336–51 |pmid=21548129 |pmc=3109510}}
15. ^{{cite journal |doi=10.4049/jimmunol.0901084 |title=Ethanol-Induced Expression of ET-1 and ET-BR in Liver Sinusoidal Endothelial Cells and Human Endothelial Cells Involves Hypoxia-Inducible Factor-1 and MicroRNA-199 |year=2009 |last1=Yeligar |first1=S. |last2=Tsukamoto |first2=H. |last3=Kalra |first3=V. K. |journal=The Journal of Immunology |volume=183 |issue=8 |pages=5232–43 |pmid=19783678 |pmc=3622549}}

Further reading

  • {{cite journal |doi=10.1093/carcin/bgn209 |title=Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone |year=2008 |last1=Kalscheuer |first1=Stephen |last2=Zhang |first2=Xiaoxiao |last3=Zeng |first3=Yan |last4=Upadhyaya |first4=Pramod |journal=Carcinogenesis |volume=29 |issue=12 |pages=2394–9 |pmid=18780894 |pmc=2722864}}
  • {{cite journal |doi=10.1186/1476-4598-9-227 |title=Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion |year=2010 |last1=Shen |first1=Qingli |last2=Cicinnati |first2=Vito R |last3=Zhang |first3=Xiaoyong |last4=Iacob |first4=Speranta |last5=Weber |first5=Frank |last6=Sotiropoulos |first6=Georgios C |last7=Radtke |first7=Arnold |last8=Lu |first8=Mengji |last9=Paul |first9=Andreas |last10=Gerken |first10=Guido |last11=Beckebaum |first11=Susanne |journal=Molecular Cancer |volume=9 |pages=227 |pmid=20799954 |pmc=2939569}}
  • {{cite journal |doi=10.1016/j.antiviral.2010.08.008 |title=Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210 |year=2010 |last1=Zhang |first1=Guang-Ling |last2=Li |first2=Yi-Xuan |last3=Zheng |first3=Shu-qi |last4=Liu |first4=Min |last5=Li |first5=Xin |last6=Tang |first6=Hua |journal=Antiviral Research |volume=88 |issue=2 |pages=169–75 |pmid=20728471}}
  • {{cite journal |doi=10.1158/0008-5472.CAN-10-0145 |title=MiR-199a-3p Regulates mTOR and c-Met to Influence the Doxorubicin Sensitivity of Human Hepatocarcinoma Cells |year=2010 |last1=Fornari |first1=Francesca |last2=Milazzo |first2=Maddalena |last3=Chieco |first3=Pasquale |last4=Negrini |first4=Massimo |last5=Calin |first5=George Adrian |last6=Grazi |first6=Gian Luca |last7=Pollutri |first7=Daniela |last8=Croce |first8=Carlo Maria |last9=Bolondi |first9=Luigi |last10=Gramantieri |first10=Laura |journal=Cancer Research |volume=70 |issue=12 |pages=5184–93 |pmid=20501828}}

External links

  • {{Rfam|id=RF00144|name=mir-199 microRNA precursor}}
  • miRBase family MIPF0000040{{dead link|date=February 2018 |bot=InternetArchiveBot |fix-attempted=yes }}
{{miRNA precursor families}}

1 : MicroRNA

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 9:58:20