词条 | Odlyzko–Schönhage algorithm |
释义 |
In mathematics, the Odlyzko–Schönhage algorithm is a fast algorithm for evaluating the Riemann zeta function at many points, introduced by {{harvs|author1-link=Andrew Odlyzko|last1=Odlyzko|last2=Schönhage|author2-link=Arnold Schönhage|year=1988}}. The main point is the use of the fast Fourier transform to speed up the evaluation of a finite Dirichlet series of length N at O(N) equally spaced values from O(N2) to O(N1+ε) steps (at the cost of storing O(N1+ε) intermediate values). The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part T uses a finite Dirichlet series with about N = T1/2 terms, so when finding about N values of the Riemann zeta function it is sped up by a factor of about T1/2. This reduces the time to find the zeros of the zeta function with imaginary part at most T from about T3/2+ε steps to about T1+ε steps. The algorithm can be used not just for the Riemann zeta function, but also for many other functions given by Dirichlet series. The algorithm was used by {{harvtxt|Gourdon|2004}} to verify the Riemann hypothesis for the first 1013 zeros of the zeta function. References
|author1-link=Odlyzko|author2-link=Schönhage|last=Odlyzko|first= A. M.|last2= Schönhage|first2= A. |title=Fast algorithms for multiple evaluations of the Riemann zeta function |journal=Trans. Amer. Math. Soc.|volume= 309 |year=1988|issue= 2|pages= 797–809 |doi=10.2307/2000939|jstor=2000939}}{{DEFAULTSORT:Odlyzko-Schonhage algorithm}}{{algorithm-stub}} 3 : Analytic number theory|Computational number theory|Zeta and L-functions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。