词条 | Olfactory fatigue |
释义 |
Olfactory fatigue, also known as odor fatigue, olfactory adaptation, and noseblindness, is the temporary, normal inability to distinguish a particular odor after a prolonged exposure to that airborne compound.[1] For example, when entering a restaurant initially the odor of food is often perceived as being very strong, but after time the awareness of the odor normally fades to the point where the smell is not perceptible or is much weaker. After leaving the area of high odor, the sensitivity is restored with time. Anosmia is the permanent loss of the sense of smell, and is different from olfactory fatigue. It is a term commonly used in wine tasting, where one loses the ability to smell and distinguish wine bouquet after sniffing at wine(s) continuously for an extended period of time. The term is also used in the study of indoor air quality, for example, in the perception of odors from people, tobacco, and cleaning agents. Olfactory fatigue is an example of neural adaptation or sensory adaptation. The body becomes desensitized to stimuli to prevent the overloading of the nervous system, thus allowing it to respond to new stimuli that are 'out of the ordinary'. Olfactory fatigue is when the sense of smell is blocked. This could happen for many reasons but sometimes it's simply because there are too many smells going on.[2] Some people may begin to lose their sense of smell around age 50.[3] Smell is recognized with different codes that are created in the olfactory system. Smell is categorized as a primary sensory organ.[4] When a person is trying to smell something many different things are involved in order to figure out what it is.[5][4] Our brains have to recall what this scent is from and sometimes our other senses are also involved such as taste. Olfactory receptors are triggered by the nose or mouth. Olfactory fatigue happens so that we can smell other things and so the nervous system does not fill completely.[5] Sense of smell is a key sense in our lives and some people rely on it heavily. Even though this is a very complex system with many different ideas of how it all works together.[2] When fetuses are just being developed the first sense they could use is smell.[3] Mechanism{{Technical|section|date=October 2018}}After olfactory neurons depolarize in response to an odorant, the G-protein mediated second messenger response activates adenylyl cyclase, increasing cyclic AMP (cAMP) concentration inside a cell, which then opens a cyclic nucleotide gated cation channel.[6] The influx of Ca2+ ions through this channel triggers olfactory adaptation immediately because Ca2+/calmodulin-dependent protein kinase II or CaMK activation directly represses the opening of cation channels, inactivates adenylyl cyclase, and activates the phosphodiesterase that cleaves cAMP.[7] These series of actions by CaMK, desensitizes olfactory receptors to prolonged odorant exposure. An ORNs or an Olfactory Receptor Neuron alert goes off to detect the smell. When the nose is covered out taste is a lot harder because the air we breathe goes into our nose as well. A common idea is that vanilla smells sweet and that is because we taste sweet when we eat vanilla flavorings.[8] Improving olfactory senseOlfactometric method and clinical studies{{Unreferenced section|date=January 2016}}Sachs mentions the earliest reference as old as early nineteenth century. The primitive stages in curing the condition in humans were through the clinical experiments. The Elsberg method was one of the first to determine the threshold value for odorous substances. To date, his olfactometric method is known as one of the best methods to stimulate the threshold of olfactory senses and determine the decaying of the senses once there has been a continuous supply of same smell. Rejuvenation through coffeeSome perfumers stock coffee beans near their displays as it is commonly believed that smelling coffee between perfume testing can limit or reverse olfactory fatigue. This view remains controversial, with some researchers citing positive reactions while subsequent research seems to indicate no benefit from sniffing coffee beans compared to lemons scents or plain air:
Rejuvenation through other meansAnother commonly believed way to reduce olfactory fatigue is to smell one's own unperfumed skin (typically the crook of the elbow) on the theory this is the "baseline" smell for each individual.{{citation needed|date=April 2016}} See also
References1. ^Odors chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005 2. ^1 {{Cite web|url=http://www.chemdaq.com/olfactory-fatigue/|title=What is Olfactory Fatigue? Do you have it?|date=2018-02-19|website=ChemDAQ Incorporated|language=en-US|access-date=2019-02-26}} 3. ^1 {{cite journal | vauthors = Sarnat HB, Flores-Sarnat L, Wei XC | title = Olfactory Development, Part 1: Function, From Fetal Perception to Adult Wine-Tasting | journal = Journal of Child Neurology | volume = 32 | issue = 6 | pages = 566–578 | date = May 2017 | pmid = 28424010 | doi = 10.1177/0883073817690867 }} 4. ^1 {{cite journal | vauthors = Auffarth B | title = Understanding smell--the olfactory stimulus problem | journal = Neuroscience and Biobehavioral Reviews | volume = 37 | issue = 8 | pages = 1667–79 | date = September 2013 | pmid = 23806440 | doi = 10.1016/j.neubiorev.2013.06.009 }} 5. ^1 {{cite journal | vauthors = Saito N, Yamano E, Ishii A, Tanaka M, Nakamura J, Watanabe Y | title = Involvement of the olfactory system in the induction of anti-fatigue effects by odorants | journal = PLOS One | volume = 13 | issue = 3 | pages = e0195263 | date = 2018-03-29 | pmid = 29596487 | pmc = 5875884 | doi = 10.1371/journal.pone.0195263 | url = https://dx.plos.org/10.1371/journal.pone.0195263 | editor-first = Gregg | editor-last = Roman }} 6. ^{{cite journal | vauthors = Chen TY, Yau KW | title = Direct modulation by Ca(2+)-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons | journal = Nature | volume = 368 | issue = 6471 | pages = 545–8 | date = April 1994 | pmid = 7511217 | doi = 10.1038/368545a0 | bibcode = 1994Natur.368..545C }} 7. ^{{cite journal | vauthors = Dougherty DP, Wright GA, Yew AC | title = Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 102 | issue = 30 | pages = 10415–20 | date = July 2005 | pmid = 16027364 | pmc = 1180786 | doi = 10.1073/pnas.0504099102 | bibcode = 2005PNAS..10210415D }} 8. ^{{cite journal | vauthors = Auvray M, Spence C | title = The multisensory perception of flavor | journal = Consciousness and Cognition | volume = 17 | issue = 3 | pages = 1016–31 | date = September 2008 | pmid = 17689100 | doi = 10.1016/j.concog.2007.06.005 }} 9. ^{{cite journal | vauthors = Dorri Y, Sabeghi M, Kurien BT | title = Awaken olfactory receptors of humans and experimental animals by coffee odourants to induce appetite | journal = Medical Hypotheses | volume = 69 | issue = 3 | pages = 508–9 | date = 2 March 2007 | pmid = 17331659 | doi = 10.1016/j.mehy.2006.12.048 }} 10. ^{{cite journal | vauthors = Secundo L, Sobel N | title = The influence of smelling coffee on olfactory habituation. | journal = Chemical Senses 2006 | date = June 2006 | volume = 31 | issue = 5 | pages = A52–A52 }} 11. ^{{cite journal | vauthors = Grosofsky A, Haupert ML, Versteeg SW | title = An exploratory investigation of coffee and lemon scents and odor identification | journal = Perceptual and Motor Skills | volume = 112 | issue = 2 | pages = 536–8 | date = April 2011 | pmid = 21667761 | doi = 10.2466/24.PMS.112.2.536-538 }} External links
3 : Building biology|Olfaction|Wine tasting |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。