请输入您要查询的百科知识:

 

词条 Order-7 triangular tiling
释义

  1. Hurwitz surfaces

  2. Related polyhedra and tiling

  3. See also

  4. References

  5. External links

{{Uniform hyperbolic tiles db|Reg hyperbolic tiling stat table|U73_2}}

In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,7}.

Hurwitz surfaces

{{see|Hurwitz surface}}

The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the (2,3,7) Schwarz triangle. This is the smallest hyperbolic Schwarz triangle, and thus, by the proof of Hurwitz's automorphisms theorem, the tiling is the universal tiling that covers all Hurwitz surfaces (the Riemann surfaces with maximal symmetry group), giving them a triangulation whose symmetry group equals their automorphism group as Riemann surfaces.

The smallest of these is the Klein quartic, the most symmetric genus 3 surface, together with a tiling by 56 triangles, meeting at 24 vertices, with symmetry group the simple group of order 168, known as PSL(2,7). The resulting surface can in turn be polyhedrally immersed into Euclidean 3-space, yielding the small cubicuboctahedron.[1]

The dual order-3 heptagonal tiling has the same symmetry group, and thus yields heptagonal tilings of Hurwitz surfaces.


The symmetry group of the order-7 triangular tiling has fundamental domain the (2,3,7) Schwarz triangle, which yields this tiling.

The small cubicuboctahedron is a polyhedral immersion of the Klein quartic,[1] which, like all Hurwitz surfaces, is a quotient of this tiling.

Related polyhedra and tiling

It is related to two star-tilings by the same vertex arrangement: the order-7 heptagrammic tiling, {7/2,7}, and heptagrammic-order heptagonal tiling, {7,7/2}.

This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {3,p}.

{{Triangular regular tiling}}

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

{{Heptagonal tiling table}}

See also

{{Commonscat|Order-7 triangular tiling}}
  • Order-7 tetrahedral honeycomb
  • List of regular polytopes
  • List of uniform planar tilings
  • Tilings of regular polygons
  • Triangular tiling
  • Uniform tilings in hyperbolic plane

References

1. ^{{Harv|Richter}} Note each face in the polyhedron consist of multiple faces in the tiling – two triangular faces constitute a square face and so forth, as per this explanatory image.
{{refbegin}}
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
  • {{citation | ref = {{harvid|Richter}} | first = David A. | last = Richter | url = http://homepages.wmich.edu/~drichter/mathieu.htm | title = How to Make the Mathieu Group M24 | accessdate = 2010-04-15 }}
{{refend}}

External links

  • {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
  • {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch
{{Tessellation}}

6 : Hyperbolic tilings|Isogonal tilings|Isohedral tilings|Order-7 tilings|Regular tilings|Triangular tilings

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 14:06:26