请输入您要查询的百科知识:

 

词条 Ornstein–Zernike equation
释义

  1. Derivation

  2. Closure relations

  3. See also

  4. References

  5. External links

In statistical mechanics the Ornstein–Zernike equation (named after Leonard Ornstein and Frits Zernike) is an integral equation for defining the direct correlation function. It basically describes how the correlation between two molecules can be calculated. Its applications can mainly be found in fluid theory. In molecular theories of ionic solutions, this type of integral equation can be used as a probabilistic description how molecules (i.e. particles, ions, and colloids), distribute space and time given their interaction energies.[1]

Derivation

The derivation below is heuristic in nature: rigorous derivations require extensive graph analysis or functional techniques. The interested reader is referred to the text book for the full derivation.[2]

It is convenient to define the total correlation function:

which is a measure for the "influence" of molecule 1 on molecule 2 at a distance away with as the radial distribution function. In 1914 Ornstein and Zernike proposed [3] to split this influence into two contributions, a direct and indirect part. The direct contribution is defined to be given by the direct correlation function, denoted . The indirect part is due to the influence of molecule 1 on a third molecule, labeled 3, which in turn affects molecule 2, directly and indirectly. This indirect effect is weighted by the density and averaged over all the possible positions of particle 3. This decomposition can be written down mathematically as

which is called the Ornstein–Zernike equation. Its interest is that, by eliminating the indirect influence, is shorter-ranged than and can be more easily described.

If we define the distance vector between two molecules for , the OZ equation can be rewritten using a convolution.

.

If we then denote the Fourier transforms of and by and , respectively, and use the convolution theorem we obtain

which yields

One needs to solve for both and (or, equivalently, their Fourier transforms). This requires an additional equation, known as a closure relation. The Ornstein–Zernike equation can be formally seen as a definition of the direct correlation function in terms of the total correlation function . The details of the system under study (most notably, the shape of the interaction potential ) are taken into account by the choice of the closure relation. Commonly used closures are the Percus–Yevick approximation, well adapted for particles with an impenetrable core, and the hypernetted-chain equation, widely used for "softer" potentials.

More information can be found in.[4]

Closure relations

Closure relations are independent second equations that connect the total correlation and the direct correlation . The Ornstein-Zernike equation and a second equation are needed in order to solve for two unknowns: the total correlation and the direct correlation .[1] The word "closure" means that it closes or "completes" the conditions for a unique determination of and .[1]

See also

  • Percus–Yevick approximation, a closure relation for solving the OZ equation
  • Hypernetted-chain equation, a closure relation for solving the OZ equation

References

1. ^{{cite book|last1=Lee|first1=Lloyd|title=Molecular Thermodynamics of Electrolyte Solutions|date=2008|pages=103-107|publisher=World Scientific|isbn=9812814191}}
2. ^{{cite book|last1= Frisch |first1= H. |last2= Lebowitz |first2= J.L. |title= The Equilibrium Theory of Classical Fluids |location= New York |publisher= Benjamin |year= 1964 |asin= B000PHQPES }}
3. ^{{cite journal |last1= Ornstein |first1= L. S. |last2= Zernike |first2= F. |title= Accidental deviations of density and opalescence at the critical point of a single substance |series= Proceedings |journal= Royal Netherlands Academy of Arts and Sciences (KNAW) |date= 1914 |volume= 17 |pages= 793–806|bibcode= 1914KNAB...17..793. |url= http://www.dwc.knaw.nl/DL/publications/PU00012727.pdf |format= pdf |quote= Archived 24 Sep 2010 at the 'Digital Library' of the Dutch History of Science Web Center }}
4. ^{{cite book |first= D.A. |last= McQuarrie |title= Statistical Mechanics |publisher= University Science Books |date= May 2000 |orig-year= 1976 |pages= 641 |isbn= 9781891389153 }}

External links

  • The Ornstein–Zernike equation and integral equations
  • Multilevel wavelet solver for the Ornstein–Zernike equation Abstract
  • Analytical solution of the Ornstein–Zernike equation for a multicomponent fluid
  • The Ornstein–Zernike equation in the canonical ensemble
  • Ornstein–Zernike Theory for Finite-Range Ising Models Above Tc
{{DEFAULTSORT:Ornstein-Zernike equation}}

2 : Statistical mechanics|Integral equations

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 7:27:49