词条 | Overdrafting | ||||||||||||||||||||||||||
释义 |
Overdrafting is the process of extracting groundwater beyond the equilibrium yield of the aquifer. There are two sets of yields, safe yield and sustainable yield. Safe yield is the amount of water that can be taken out of the ground without there being any undesirable results. Sustainable yield is extraction that takes into account both recharge rate and surface water impacts There are two types of aquifers. The first is confined aquifers, where the aquifer has an overbearing layer called aquitard, which contains materials that does not allow for penetration for groundwater extraction. The second is unconfined aquifers, where the aquifer does not have a aquitard over its layer and the groundwater is able to be penetrated for extraction. Extracting groundwater from unconfined aquifers is like borrowing the water, it has to be recharged at a proper amount. If recharge is not done so in proper amounts there can be many impacts. Recharge may happen through artificial recharge and natural recharge.[1] Natural process of recharge is done through percolation of surface water. Artificial process of recharging the aquifer is through means of pumping reclaimed water from wastewater management projects directly into the aquifer. An example is the Orange County Water District in the State of California.[2] This organization take waste water, treats it to a proper level, and then systematically pumps it back into the aquifers for artificial recharge. When groundwater is extracted the water is primarily pulled from the aquifer which creates a cone depression around the well. When drafting of water continues the cone of depression increases in width. The increase in width leads to the negative impacts caused by overdrafting. Impacts include aiding in the drop of water table, land subsidence, and loss of surface water reaching the streams. In extreme cases the supply of water to naturally recharge the aquifers is pulled directly from streams and rivers, leading to depletion of water levels in streams and rivers. The depletion of water in rivers and streams has an effect on not only the wildlife, but also humans who might be using the water for other purposes.[3] Since every groundwater basin recharges at a different rate depending upon precipitation, vegetative cover and soil conservation practises, the quantity of groundwater that can be safely pumped varies greatly among regions of the world and even within provinces. Some aquifers require a very long time to recharge and thus the process of overdrafting can have consequences of effectively drying up certain sub-surface water supplies. Subsidence occurs when excessive groundwater is extracted from rocks that support more weight when saturated. This can lead to a capacity reduction in the aquifer.[4] Groundwater is the fresh water that can be found underground; it is also one of the largest sources. Groundwater depletion can be comparable to ¨money in a bank¨,[5] The primary cause of groundwater depletion is pumping or the excessive pulling up of groundwater from underground aquifers. Around the world
The ranking is based on the amount of groundwater each country uses for agriculture. This issue is becoming quite large in the United States (most notably California), but it is also worth noting that it has been a problem in other parts of the world, as was documented in Punjab, India in 1987[7] Accelerated decline in subterranean reservoirsAccording to a 2013 report by research hydrologist, Leonard F. Konikow,[8] at the United States Geological Survey (USGS), the depletion of the Ogallala Aquifer between 2001–2008, inclusive, is about 32 percent of the cumulative depletion during the entire 20th century (Konikow 2013:22)."[8] In the United States, the biggest users of water from aquifers include agricultural irrigation and oil and coal extraction.[9] "Cumulative total groundwater depletion in the United States accelerated in the late 1940s and continued at an almost steady linear rate through the end of the century. In addition to widely recognized environmental consequences, groundwater depletion also adversely impacts the long-term sustainability of groundwater supplies to help meet the Nation’s water needs."[8] According to another USGS study of withdrawals from 66 major US aquifers, the three greatest uses of water extracted from aquifers were agriculture (irrigation) (68%), public water supply (19%), and self-supplied industrial (4%). The remaining about 8% of groundwater withdrawals were for “self-supplied domestic, aquaculture, livestock, mining, and thermoelectric power uses.”[10] Impacts on the environmentThe environmental impact of overdrafting includes:
Effects on climateAquifer drawdown or overdrafting and the pumping of fossil water may be a contributing factor to sea-level rise.[11] By increasing the amount of moisture available to fall as precipitation, severe weather events are more likely to occur. To some extent moisture in the atmosphere accelerates the probability of a global warming event. The correlation coefficient is not yet scientifically determined. Socio-economic effectsScores of countries are overpumping aquifers as they struggle to satisfy their growing water needs, including each of the big three grain producers— China, India, and the United States. These three, along with a number of other countries where water tables are falling, are home to more than half the world’s people. Water is intrinsic to biological and economic growth, and overdraft limits its available supply. According to Liebig's law of the minimum, growth is therefore impeded. Deeper wells must be drilled as the water table drops, which can become expensive. In addition, the energy needed to extract a given volume of water increases with the amount the aquifer has been depleted. The deeper the water is extracted from the worse the quality of the water becomes, which increases the cost of filtration. Saltwater intrusion is another consequence of overdrafting, leading to a reduction in water quality. Possible solutions
See also
References1. ^{{cite book |last1=Lassiter |first1=Allison |title=Sustainable Water Challenges and Solutions from California |date=July 2015 |publisher=University of California |isbn=9780520285354}} 2. ^{{cite web |title=Orange County Water District |url=https://www.ocwd.com/}} 3. ^{{cite book |last1=Lassiter |first1=Allison |title=Sustainable Water Challenges and Solutions from California |date=July 2015 |publisher=University of California |isbn=9780520285354}} 4. ^{{cite web |url=http://ga.water.usgs.gov/edu/earthgwlandsubside.html |title=Land subsidence |work=The USGS Water Science School |publisher=United States Geological Survey |date=2015-08-20}} 5. ^{{Cite web|title = Groundwater depletion, USGS water science|url = http://water.usgs.gov/edu/gwdepletion.html|website = water.usgs.gov|accessdate = 2015-12-31}} 6. ^{{Cite book|title = The Atlas of Water|last = Black|first = Maggie|publisher = University of California Press|year = 2009|location = Berkeley and Los Angeles, California|pages = 62|isbn=9780520259348}} 7. ^{{Cite web|title = Ground Water Depletion in Punjab on JSTOR|jstor = 4400350}} 8. ^1 2 {{cite report|url=http://pubs.usgs.gov/sir/2013/5079/SIR2013-5079.pdf|format=PDF|title=Groundwater Depletion in the United States (1900–2008) |series=Scientific Investigations Report |number=2013–5079|pages=63|publisher=U.S. Department of the Interior, U.S. Geological Survey|location=Reston, Virginia|first=Leonard F. |last=Konikow}} 9. ^{{cite news|title=Drop in U.S. underground water levels has accelerated: USGS|url=https://www.reuters.com/article/2013/05/20/us-usa-water-idUSBRE94J0Y920130520|location=Washington, DC|first=Deborah |last=Zabarenko|date=20 May 2013|publisher=Reuters}} 10. ^{{cite web |first1= Molly A. |last1= Maupin |first2= Nancy L. |last2= Barber |lastauthoramp= yes |url= http://pubs.usgs.gov/circ/2005/1279/ |title= Estimated Withdrawals from Principal Aquifers in the United States, 2000 |publisher= United States Geological Survey |id= Circular 1279 |date= July 2005}} 11. ^{{cite web|url=http://www.uu.nl/EN/Current/Pages/Wereldwijdonttrekkenvangrondwaterleidttotzeespiegelstijging.aspx|title=Rising sea levels attributed to global groundwater extraction |publisher=University of Utrecht|accessdate=February 8, 2011}} 12. ^1 {{Cite book|title = Sustainable Water|last = Lassiter|first = Allison|publisher = University of California Press|year = 2015|isbn = |location = Oakland California|pages = 186}} External links
5 : Aquifers|Environmental impact of agriculture|Environmental issues with water|Water supply|Water and the environment |
||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。