请输入您要查询的百科知识:

 

词条 Penrose transform
释义

  1. Overview

  2. Example

  3. Penrose–Ward transform

  4. References

In mathematical physics, the Penrose transform, introduced by {{harvs|txt|authorlink=Roger Penrose|first=Roger |last=Penrose|year1=1967|year2=1968|year3=1969}}, is a complex analogue of the Radon transform that relates massless fields on spacetime to cohomology of sheaves on complex projective space. The projective space in question is the twistor space, a geometrical space naturally associated to the original spacetime, and the twistor transform is also geometrically natural in the sense of integral geometry. The Penrose transform is a major component of classical twistor theory.

Overview

Abstractly, the Penrose transform operates on a double fibration of a space Y, over two spaces X and Z

In the classical Penrose transform, Y is the spin bundle, X is a compactified and complexified form of Minkowski space and Z is the twistor space. More generally examples come from double fibrations of the form

where G is a complex semisimple Lie group and H1 and H2 are parabolic subgroups.

The Penrose transform operates in two stages. First, one pulls back the sheaf cohomology groups Hr(Z,F) to the sheaf cohomology Hr(Y−1F) on Y; in many cases where the Penrose transform is of interest, this pullback turns out to be an isomorphism. One then pushes the resulting cohomology classes down to X; that is, one investigates the direct image of a cohomology class by means of the Leray spectral sequence. The resulting direct image is then interpreted in terms of differential equations. In the case of the classical

Penrose transform, the resulting differential equations are precisely the massless field equations for a given spin.

Example

The classical example is given as follows

  • The "twistor space" Z is complex projective 3-space CP3, which is also the Grassmannian Gr1(C4) of lines in 4-dimensional complex space.
  • X = Gr2(C4), the Grassmannian of 2-planes in 4-dimensional complex space. This is a compactification of complex Minkowski space.
  • Y is the flag manifold whose elements correspond to a line in a plane of C4.
  • G is the group SL4(C) and H1 and H2 are the parabolic subgroups fixing a line or a plane containing this line.

The maps from Y to X and Z are the natural projections.

Penrose–Ward transform

The Penrose–Ward transform is a non-linear modification of the Penrose transform, introduced by {{harvtxt|Ward|1977}}, that (among other things) relates holomorphic vector bundles on 3-dimensional complex projective space CP3 to solutions of the self-dual Yang–Mills equations on S4.

{{harvtxt|Atiyah|Ward|1977}} used this to describe instantons in terms of algebraic vector bundles on complex projective 3-space and {{harvtxt|Atiyah|1979}} explained how this could be used to classify instantons on a 4-sphere.

References

  • {{Citation | last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | last2=Ward | first2=R. S. | author2-link=Richard S. Ward | title=Instantons and algebraic geometry | doi=10.1007/BF01626514 | publisher=Springer Berlin / Heidelberg | mr=0494098 | year=1977 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=55 | pages=117–124|bibcode = 1977CMaPh..55..117A }}
  • {{Citation | last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | title=Geometry of Yang-Mills fields | publisher=Scuola Normale Superiore Pisa, Pisa | series=Lezioni Fermiane | isbn=978-88-7642-303-1 | mr=554924 | year=1979}}
  • {{Citation | last1=Baston | first1=Robert J. | last2=Eastwood | first2=Michael G. | title=The Penrose transform | publisher=The Clarendon Press Oxford University Press | series=Oxford Mathematical Monographs | isbn=978-0-19-853565-2 | mr=1038279 | year=1989}}.
  • {{Citation | last1=Eastwood | first1=Michael | editor1-last=Eastwood | editor1-first=Michael | editor2-last=Wolf | editor2-first=Joseph | editor3-last=Zierau. | editor3-first=Roger | title=The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992) | url=http://www.ams.org/bookstore?fn=20&arg1=conmseries&ikey=CONM-154 | publisher=Amer. Math. Soc. | location=Providence, R.I. | series=Contemp. Math. | isbn=978-0-8218-5176-0 | mr=1246377 | year=1993 | volume=154 | chapter=Introduction to Penrose transform | pages=71–75}}
  • {{eom|id=P/p120100|first=M.G.|last= Eastwood}}
  • {{Citation | last=David | first=Liana | title=The Penrose transform and its applications|publisher=University of Edinburgh|year=2001|url=https://www.era.lib.ed.ac.uk/bitstream/handle/1842/16970/David2001_redux.pdf?sequence=1&isAllowed=y|volume=|pages=}}; Doctor of Philosophy thesis.
  • {{Citation | last1=Penrose | first1=Roger | author1-link=Roger Penrose | title=Twistor algebra | url=http://link.aip.org/link/JMAPAQ/v8/i2/p345/s1 | doi=10.1063/1.1705200 | mr=0216828 | year=1967 | journal=Journal of Mathematical Physics | issn=0022-2488 | volume=8 | pages=345–366 | bibcode=1967JMP.....8..345P | deadurl=yes | archiveurl=https://archive.is/20130112095407/http://link.aip.org/link/JMAPAQ/v8/i2/p345/s1 | archivedate=2013-01-12 | df= }}
  • {{Citation | last1=Penrose | first1=Roger | author1-link=Roger Penrose | title=Twistor quantisation and curved space-time | doi=10.1007/BF00668831 | publisher=Springer Netherlands |year=1968 | journal=International Journal of Theoretical Physics | issn=0020-7748 | volume=1 | pages=61–99|bibcode = 1968IJTP....1...61P }}
  • {{Citation | last1=Penrose | first1=Roger | author1-link=Roger Penrose | title=Solutions of the Zero‐Rest‐Mass Equations | url=http://link.aip.org/link/JMAPAQ/v10/i1/p38/s1 | archive-url=https://archive.is/20130112125501/http://link.aip.org/link/JMAPAQ/v10/i1/p38/s1 | dead-url=yes | archive-date=2013-01-12 | doi=10.1063/1.1664756 | year=1969 | journal=Journal of Mathematical Physics | issn=0022-2488 | volume=10 | issue=1 | pages=38–39 | bibcode=1969JMP....10...38P }}
  • {{Citation | last1=Penrose | first1=Roger | author1-link=Roger Penrose | last2=Rindler | first2=Wolfgang | author2-link=Wolfgang Rindler | title=Spinors and space-time. Vol. 2 | publisher=Cambridge University Press | series=Cambridge Monographs on Mathematical Physics | isbn=978-0-521-25267-6 | mr=838301 | year=1986}}.
  • {{Citation | last1=Ward | first1=R. S. | author1-link=Richard S. Ward | title=On self-dual gauge fields | doi=10.1016/0375-9601(77)90842-8 | mr=0443823 | year=1977 | journal=Physics Letters A | issn=0375-9601 | volume=61 | issue=2 | pages=81–82|bibcode = 1977PhLA...61...81W }}
{{Topics of twistor theory}}

1 : Integral geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 12:00:12