请输入您要查询的百科知识:

 

词条 P-matrix
释义

  1. Spectra of -matrices

  2. Remarks

  3. See also

  4. Notes

  5. References

In mathematics, a -matrix is a complex square matrix with every principal minor > 0. A closely related class is that of -matrices, which are the closure of the class of -matrices, with every principal minor 0.

Spectra of -matrices

By a theorem of Kellogg,[1][2] the eigenvalues of - and - matrices are bounded away from a wedge about the negative real axis as follows:

If are the eigenvalues of an -dimensional -matrix, where , then

If , , are the eigenvalues of an -dimensional -matrix, then

Remarks

The class of nonsingular M-matrices is a subset of the class of -matrices. More precisely, all matrices that are both -matrices and Z-matrices are nonsingular -matrices. The class of sufficient matrices is another generalization of -matrices.[3]

The linear complementarity problem has a unique solution for every vector if and only if is a -matrix.[4]

If the Jacobian of a function is a -matrix, then the function is injective on any rectangular region of .[5]

A related class of interest, particularly with reference to stability, is that of -matrices, sometimes also referred to as -matrices. A matrix is a -matrix if and only if is a -matrix (similarly for -matrices). Since , the eigenvalues of these matrices are bounded away from the positive real axis.

See also

  • Hurwitz matrix
  • Linear complementarity problem
  • M-matrix
  • Perron–Frobenius theorem
  • Q-matrix
  • Z-matrix (mathematics)

Notes

1. ^{{cite journal|last1=Kellogg|first1=R. B.|title=On complex eigenvalues ofM andP matrices|journal=Numerische Mathematik|date=April 1972|volume=19|issue=2|pages=170–175|doi=10.1007/BF01402527}}
2. ^{{cite journal|last1=Fang|first1=Li|title=On the spectra of P- and P0-matrices|journal=Linear Algebra and its Applications|date=July 1989|volume=119|pages=1–25|doi=10.1016/0024-3795(89)90065-7}}
3. ^{{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21|year=2006|number=2|pages=247–266|doi=10.1080/10556780500095009|url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf |mr=2195759|}}
4. ^{{cite journal|last1=Murty|first1=Katta G.|title=On the number of solutions to the complementarity problem and spanning properties of complementary cones|journal=Linear Algebra and its Applications|date=January 1972|volume=5|issue=1|pages=65–108|doi=10.1016/0024-3795(72)90019-5}}
5. ^{{cite journal|last1=Gale|first1=David|last2=Nikaido|first2=Hukukane|title=The Jacobian matrix and global univalence of mappings|journal=Mathematische Annalen|date=10 December 2013|volume=159|issue=2|pages=81–93|doi=10.1007/BF01360282}}

References

  • {{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21|year=2006|number=2|pages=247–266|doi=10.1080/10556780500095009|

url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf |mr=2195759|ref=harv}}

  • David Gale and Hukukane Nikaido, The Jacobian matrix and global univalence of mappings, Math. Ann. 159:81-93 (1965) {{doi|10.1007/BF01360282}}
  • Li Fang, On the Spectra of - and -Matrices, Linear Algebra and its Applications 119:1-25 (1989)
  • R. B. Kellogg, On complex eigenvalues of and matrices, Numer. Math. 19:170-175 (1972)

2 : Matrix theory|Matrices

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 2:08:42