请输入您要查询的百科知识:

 

词条 Polysulfide bromide battery
释义

  1. Chemistry

  2. See also

  3. References

  4. External links

The polysulfide bromide battery (PSB), (sometimes polysulphide bromide), is a type of regenerative fuel cell involving a reversible electrochemical reaction between two salt-solution electrolytes: sodium bromide and sodium polysulfide. It is an example and type of redox (reduction–oxidation) flow battery.

In 2002, a 12 MWe prototype electrical storage facility was built at Little Barford Power Station in the UK,[1] which uses polysulfide bromide flow batteries. Although the facility was completed, due to engineering issues in scaling up the technology, it was never fully commissioned.[2] A similar demonstration plant located at the Tennessee Valley Authority (TVA) facility in Columbus, Mississippi, United States was never completed.

Chemistry

Two different salt solution electrolytes are contained in two separate tanks. When energy is required, a solution of Na2S2 (sodium disulfide) is pumped to the anode, and NaBr3 (sodium tribromide) is pumped to the cathode. The anode and cathode, and their corresponding salt solutions, are separated by an ion exchange membrane. At the negative electrode, the anodic reaction is shown as:

2Na2S2 → Na2S4 + 2Na+ + 2e

At the positive electrode, the cathodic reaction is shown as:

NaBr3 + 2Na+ + 2e→ 3NaBr

As energy is drawn from the system, the sodium disulfide becomes sodium polysulfide, and the sodium tribromide becomes sodium bromide. This reaction can be reversed when a current is supplied to the electrodes, and the system chemical salts are recharged. The system is defined as a fuel cell because the electrodes are not consumed by the reaction, they act only as a surface for the reaction. However, nor is the liquid a fuel that is consumed. It is a salt solution electrolyte that is changed by the process.

See also

{{Portal|Energy}}{{div col|colwidth=22em}}
  • List of battery types
  • Flow battery
  • Battery (electricity)
  • Lead–acid battery
  • Electrochemical cell
  • Electrochemical engineering
  • Fuel cell
  • Energy storage
{{div col end}}

References

1. ^{{cite journal | doi = 10.1049/pe:19990304 | volume=13 | title=A novel approach to utility-scale energy storage | year=1999 | journal=Power Engineering Journal | pages=122–129 | last1 = Price | first1 = A. | last2 = Bartley | first2 = S. | last3 = Cooley | first3 = G. | last4 = Male | first4 = S.}}
2. ^{{cite web|url=http:/www.ensg.gov.uk/assets/dgdti00055.pdf|archive-url=http://webarchive.nationalarchives.gov.uk/20100919181607/http:/www.ensg.gov.uk/assets/dgdti00055.pdf|dead-url=yes|archive-date=19 September 2010|title=Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK|accessdate=24 November 2012|page=24}}

External links

  • [https://web.archive.org/web/20070608013614/http://www.electricitystorage.org/tech/technologies_technologies_psb.htm Electricity Storage Association section on PSBs] (including diagram)
{{Galvanic cells}}{{electronics-stub}}

2 : Flow batteries|Sodium

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/26 2:17:12