请输入您要查询的百科知识:

 

词条 Prismatic uniform polyhedron
释义

  1. Vertex configuration and symmetry groups

  2. Enumeration

  3. Images

  4. See also

  5. References

  6. External links

In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.

Vertex configuration and symmetry groups

Because they are isogonal (vertex-transitive), their vertex arrangement uniquely corresponds to a symmetry group.

The difference between the prismatic and antiprismatic symmetry groups is that Dph has the vertices lined up in both planes, which gives it a reflection plane perpendicular to its p-fold axis (parallel to the {p/q} polygon); while Dpd has the vertices twisted relative to the other plane, which gives it a rotatory reflection. Each has p reflection planes which contain the p-fold axis.

The Dph symmetry group contains inversion if and only if p is even, while Dpd contains inversion symmetry if and only if p is odd.

Enumeration

There are:

  • prisms, for each rational number p/q > 2, with symmetry group Dph;
  • antiprisms, for each rational number p/q > 3/2, with symmetry group Dpd if q is odd, Dph if q is even.

If p/q is an integer, i.e. if q = 1, the prism or antiprism is convex. (The fraction is always assumed to be stated in lowest terms.)

An antiprism with p/q < 2 is crossed or retrograde; its vertex figure resembles a bowtie. If p/q ≤ 3/2 no uniform antiprism can exist, as its vertex figure would have to violate the triangle inequality.

Images

Note: The tetrahedron, cube, and octahedron are listed here with dihedral symmetry (as a digonal antiprism, square prism and triangular antiprism respectively), although if uniformly colored, the tetrahedron also has tetrahedral symmetry and the cube and octahedron also have octahedral symmetry.

Symmetry groupConvexStar forms
d2d
[2+,2]
(2*2)

3.3.3
d3h
[2,3]
(*223)

3.4.4
d3d
[2+,3]
(2*3)

3.3.3.3
d4h
[2,4]
(*224)

4.4.4
d4d
[2+,4]
(2*4)

3.3.3.4
d5h
[2,5]
(*225)

4.4.5

4.4.5/2

3.3.3.5/2
d5d
[2+,5]
(2*5)

3.3.3.5

3.3.3.5/3
d6h
[2,6]
(*226)

4.4.6
d6d
[2+,6]
(2*6)

3.3.3.6
d7h
[2,7]
(*227)

4.4.7

4.4.7/2

4.4.7/3

3.3.3.7/2

3.3.3.7/4
d7d
[2+,7]
(2*7)

3.3.3.7

3.3.3.7/3
d8h
[2,8]
(*228)

4.4.8

4.4.8/3
d8d
[2+,8]
(2*8)

3.3.3.8

3.3.3.8/3

3.3.3.8/5
d9h
[2,9]
(*229)

4.4.9

4.4.9/2

4.4.9/4

3.3.3.9/2

3.3.3.9/4
d9d
[2+,9]
(2*9)

3.3.3.9

3.3.3.9/5
d10h
[2,10]
(*2.2.10)

4.4.10

4.4.10/3
d10d
[2+,10]
(2*10)

3.3.3.10

3.3.3.10/3
d11h
[2,11]
(*2.2.11)

4.4.11

4.4.11/2

4.4.11/3

4.4.11/4

4.4.11/5

3.3.3.11/2

3.3.3.11/4

3.3.3.11/6
d11d
[2+,11]
(2*11)

3.3.3.11

3.3.3.11/3

3.3.3.11/5

3.3.3.11/7
d12h
[2,12]
(*2.2.12)

4.4.12

4.4.12/5
d12d
[2+,12]
(2*12)

3.3.3.12

3.3.3.12/5

3.3.3.12/7
...

See also

  • Uniform polyhedron
  • Prism (geometry)
  • Antiprism

References

  • {{Cite journal | last1=Coxeter | first1=Harold Scott MacDonald | author1-link=Harold Scott MacDonald Coxeter | last2=Longuet-Higgins | first2=M. S. | last3=Miller | first3=J. C. P. | title=Uniform polyhedra | jstor=91532 | mr=0062446 | year=1954 | journal=Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences | issn=0080-4614 | volume=246 |issue=916 | pages=401–450 | publisher=The Royal Society | doi=10.1098/rsta.1954.0003 | ref=harv}}
  • Cromwell, P.; Polyhedra, CUP, Hbk. 1997, {{isbn|0-521-66432-2}}. Pbk. (1999), {{isbn|0-521-66405-5}}. p.175
  • {{citation|first=John|last=Skilling|title=Uniform Compounds of Uniform Polyhedra|journal=Mathematical Proceedings of the Cambridge Philosophical Society|volume=79|pages=447–457|year=1976|doi=10.1017/S0305004100052440|mr=0397554|issue=3}}.

External links

  • Prisms and Antiprisms George W. Hart
{{Polyhedron navigator}}

2 : Prismatoid polyhedra|Uniform polyhedra

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 22:26:06