词条 | Pythagorean quadruple | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
A Pythagorean quadruple is a tuple of integers {{math|a}}, {{math|b}}, {{math|c}} and {{math|d}}, such that {{math|a{{sup|2}} + b{{sup|2}} + c{{sup|2}} {{=}} d{{sup|2}}}}. They are solutions of a Diophantine equation and often only positive integer values are considered.[1] However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that {{math|d > 0}}. In this setting, a Pythagorean quadruple {{math|(a, b, c, d)}} defines a cuboid with integer side lengths {{math|{{abs|a}}}}, {{math|{{abs|b}}}}, and {{math|{{abs|c}}}}, whose space diagonal has integer length {{math|d}}. Pythagorean quadruples, with this interpretation are thus also called Pythagorean boxes.[2] In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers. Parametrization of primitive quadruplesA Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The set of primitive Pythagorean quadruples for which {{math|a}} is odd can be generated by the formulas where {{math|m}}, {{math|n}}, {{math|p}}, {{math|q}} are non-negative integers with greatest common divisor 1 such that {{math|m + n + p + q}} is odd.[3][4][1] Thus, all primitive Pythagorean quadruples are characterized by Lebesgue's identity{{clarify|Is there a source for this name?|date=June 2017}} Alternate parametrizationAll Pythagorean quadruples (including non-primitives, and with repetition, though {{math|a}}, {{math|b}} and {{math|c}} do not appear in all possible orders) can be generated from two positive integers {{math|a}} and {{math|b}} as follows: If {{math|a}} and {{math|b}} have different parity, let {{math|p}} be any factor of {{math|a{{sup|2}} + b{{sup|2}}}} such that {{math|p{{sup|2}} < a{{sup|2}} + b{{sup|2}}}}. Then {{math|c {{=}} {{sfrac|a{{sup|2}} + b{{sup|2}} − p{{sup|2}}|2p}}}} and {{math|d {{=}} {{sfrac|a{{sup|2}} + b{{sup|2}} + p{{sup|2}}|2p}}}}. Note that {{math|p {{=}} d − c}}. A similar method exists[5] for generating all Pythagorean quadruples for which {{math|a}} and {{math|b}} are both even. Let {{math|l {{=}} {{sfrac|a|2}}}} and {{math|m {{=}} {{sfrac|b|2}}}} and let {{math|n}} be a factor of {{math|l{{sup|2}} + m{{sup|2}}}} such that {{math|n{{sup|2}} < l{{sup|2}} + m{{sup|2}}}}. Then {{math|c {{=}} {{sfrac|l{{sup|2}} + m{{sup|2}} − n{{sup|2}}|n}}}} and {{math|d {{=}} {{sfrac|l{{sup|2}} + m{{sup|2}} + n{{sup|2}}|n}}}}. This method generates all Pythagorean quadruples exactly once each when {{math|l}} and {{math|m}} run through all pairs of natural numbers and {{math|n}} runs through all permissible values for each pair. No such method exists if both {{math|a}} and {{math|b}} are odd, in which case no solutions exist as can be seen by the parametrization in the previous section. PropertiesThe largest number that always divides the product {{math|abcd}} is 12.[6] The quadruple with the minimal product is (1, 2, 2, 3). Relationship with quaternions and rational orthogonal matricesA primitive Pythagorean quadruple {{math|(a, b, c, d)}} parametrized by {{math|(m,n,p,q)}} corresponds to the first column of the matrix representation {{math|E(α)}} of conjugation {{math|α(⋅){{overline|α}}}} by the Hurwitz quaternion {{math|α {{=}} m + ni + pj + qk}} restricted to the subspace of {{math|ℍ}} spanned by {{math|i}}, {{math|j}}, {{math|k}}, which is given by where the columns are pairwise orthogonal and each has norm {{math|d}}. Furthermore, we have {{math|{{sfrac|1|d}}E(α) ∈ SO(3,ℚ)}}, and, in fact, all 3 × 3 orthogonal matrices with rational coefficients arise in this manner.[7] Primitive Pythagorean quadruples with small normThere are 31 primitive Pythagorean quadruples in which all entries are less than 30.
See also
References1. ^1 R. Spira, The diophantine equation {{math|x{{sup|2}} + y{{sup|2}} + z{{sup|2}} {{=}} m{{sup|2}}}}, Amer. Math. Monthly Vol. 69 (1962), No. 5, 360–365. 2. ^R.A. Beauregard and E. R. Suryanarayan, Pythagorean boxes, Math. Magazine 74 (2001), 222–227. 3. ^R.D. Carmichael, Diophantine Analysis, New York: John Wiley & Sons, 1915. 4. ^L.E. Dickson, Some relations between the theory of numbers and other branches of mathematics, in Villat (Henri), ed., Conférence générale, Comptes rendus du Congrès international des mathématiciens, Strasbourg, Toulouse, 1921, pp. 41–56; reprint Nendeln/Liechtenstein: Kraus Reprint Limited, 1967; Collected Works 2, pp. 579–594. 5. ^Sierpiński, Wacław, Pythagorean Triangles, Dover, 2003 (orig. 1962), p.102–103. 6. ^MacHale, Des, and van den Bosch, Christian, "Generalising a result about Pythagorean triples", Mathematical Gazette 96, March 2012, pp. 91-96. 7. ^J. Cremona, Letter to the Editor, Amer. Math. Monthly 94 (1987), 757–758. External links
6 : Additive number theory|Arithmetic problems of plane geometry|Diophantine equations|Diophantine geometry|Pythagorean theorem|Squares in number theory |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。