请输入您要查询的百科知识:

 

词条 Rectified 120-cell
释义

  1. Rectified 120-cell

  2. Projections

  3. Related polytopes

  4. Notes

  5. References

  6. External links

Four rectifications
120-cell
{{CDD>node_1|5|node|3|node|3|node}}
Rectified 120-cell
{{CDD>node|5|node_1|3|node|3|node}}
600-cell
{{CDD>node|5|node|3|node|3|node_1}}
Rectified 600-cell
{{CDD>node|5|node|3|node_1|3|node}}
Orthogonal projections in H3 Coxeter plane

In geometry, a rectified 120-cell is a uniform 4-polytope formed as the rectification of the regular 120-cell.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC120.

There are four rectifications of the 120-cell, including the zeroth, the 120-cell itself. The birectified 120-cell is more easily seen as a rectified 600-cell, and the trirectified 120-cell is the same as the dual 600-cell.

{{TOC left}}{{-}}

Rectified 120-cell

Rectified 120-cell

Schlegel diagram, centered on icosidodecahedon, tetrahedral cells visible
TypeUniform 4-polytope
Uniform index33
Coxeter diagramnode|5|node_1|3|node|3|node}}
Schläfli symbol t1{5,3,3}
or r{5,3,3}
Cells720 total:
120 (3.5.3.5)
600 (3.3.3)
Faces3120 total:
2400 {3}, 720 {5}
Edges3600
Vertices1200
Vertex figure
triangular prism
Symmetry groupH4 or [3,3,5]
Propertiesconvex, vertex-transitive, edge-transitive

In geometry, the rectified 120-cell or rectified hecatonicosachoron is a convex uniform 4-polytope composed of 600 regular tetrahedra and 120 icosidodecahedra cells. Its vertex figure is a triangular prism, with three icosidodecahedra and two tetrahedra meeting at each vertex.

Alternative names:

  • Rectified 120-cell (Norman Johnson)
  • Rectified hecatonicosichoron / rectified dodecacontachoron / rectified polydodecahedron
  • Icosidodecahedral hexacosihecatonicosachoron
  • Rahi (Jonathan Bowers: for rectified hecatonicosachoron)
  • Ambohecatonicosachoron (Neil Sloane & John Horton Conway)

Projections

3D parallel projection
Parallel projection of the rectified 120-cell into 3D, centered on an icosidodecahedral cell. Nearest cell to 4D viewpoint shown in orange, and tetrahedral cells shown in yellow. Remaining cells culled so that the structure of the projection is visible.
Orthographic projections by Coxeter planes
H4 -F4

[30]

[20]

[12]
H3A2 / B3 / D4A3 / B2

[10]

[6]

[4]

Related polytopes

{{H4_family}}

Notes

References

  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links

  • {{PolyCell | urlname = section4.html| title = Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 33}}
  • rectified 120-cell Marco Möller's Archimedean polytopes in R4 (German)
  • {{KlitzingPolytopes|polychora.htm|4D uniform polytopes (polychora)|o3o3x5o - rahi}}
  • {{de icon}} Four-dimensional Archimedean Polytopes, Marco Möller, 2004 PhD dissertation  
  • H4 uniform polytopes with coordinates: r{5,3,3}
{{Polytopes}}

1 : Polychora

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 23:03:11