请输入您要查询的百科知识:

 

词条 Residue field
释义

  1. Definition

  2. Example

  3. Properties

  4. References

  5. Further reading

In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R/m, which is a field.[1] Frequently, R is a local ring and m is then its unique maximal ideal.

This construction is applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x).[2] One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point.{{clarify|date=February 2015}}

Definition

Suppose that R is a commutative local ring, with the maximal ideal m. Then the residue field is the quotient ring R/m.

Now suppose that X is a scheme and x is a point of X. By the definition of scheme, we may find an affine neighbourhood U = Spec(A), with A some commutative ring. Considered in the neighbourhood U, the point x corresponds to a prime ideal pA (see Zariski topology). The local ring of X in x is by definition the localization R = Ap, with the maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x :

k(x) := Ap / p·Ap.

One can prove that this definition does not depend on the choice of the affine neighbourhood U.[3]

A point is called K-rational for a certain field K, if k(x) ⊂ K.[4]

Example

Consider the affine line A1(k) = Spec(k[t]) over a field k. If k is algebraically closed, there are exactly two types of prime ideals, namely

  • (t − a), ak
  • (0), the zero-ideal.

The residue fields are

  • , the function field over k in one variable.

If k is not algebraically closed, then more types arise, for example if k = R, then the prime ideal (x2 + 1) has residue field isomorphic to C.

Properties

  • For a scheme locally of finite type over a field k, a point x is closed if and only if k(x) is a finite extension of the base field k. This is a geometric formulation of Hilbert's Nullstellensatz. In the above example, the points of the first kind are closed, having residue field k, whereas the second point is the generic point, having transcendence degree 1 over k.
  • A morphism Spec(K) → X, K some field, is equivalent to giving a point xX and an extension K/k(x).
  • The dimension of a scheme of finite type over a field is equal to the transcendence degree of the residue field of the generic point.

References

1. ^{{cite book| last1 = Dummit| first1 = D. S.| last2 = Foote| first2 = R.| title = Abstract Algebra| publisher = Wiley| year = 2004| edition = 3| isbn = 9780471433347 }}
2. ^{{cite book | author = David Mumford | year = 1999 | title = The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians | edition = 2nd | publisher = Springer-Verlag | doi = 10.1007/b62130 | isbn = 3-540-63293-X}}
3. ^Intuitively, the residue field of a point is a local invariant. Axioms of schemes are set up in such a way as to assure the compatibility between various affine open neighborhoods of a point, which implies the statement.
4. ^Görtz, Ulrich and Wedhorn, Torsten. Algebraic Geometry: Part 1: Schemes (2010) Vieweg+Teubner Verlag.

Further reading

  • {{Citation | last1=Hartshorne | first1=Robin | author1-link = Robin Hartshorne | title=Algebraic Geometry | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-0-387-90244-9 |mr=0463157 | year=1977}}, section II.2

1 : Algebraic geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 12:29:00