请输入您要查询的百科知识:

 

词条 Ribonuclease III
释义

  1. Types of RNase III

  2. Human proteins containing RNase III domain

  3. See also

  4. References

  5. External links

{{Pfam_box
| Symbol = RNase_III
| Name = Ribonuclease III domain
| image = PDB 1yyw EBI.jpg
| width =
| caption = Ribonuclease III structure interacting with double stranded RNA.
| Pfam= PF00636
| InterPro= IPR000999
| SMART=
| Prosite = PDOC00448
| SCOP = 1jfz
| TCDB =
| OPM family=
| OPM protein=
| PDB={{PDB3|1o0w}}B:51-141 {{PDB3|2a11}}A:41-134 {{PDB3|1jfz}}A:37-121{{PDB3|1rc7}}A:37-121 {{PDB3|1yyw}}A:37-121 {{PDB3|1i4s}}A:37-121{{PDB3|1rc5}}B:37-121 {{PDB3|1yyo}}A:37-121 {{PDB3|1yyk}}B:37-121{{PDB3|1yz9}}A:37-121 {{PDB3|2ffl}}A:333-418 {{PDB3|1u61}}A:10-111
}}Ribonuclease III (RNase III or RNase C)[1](BRENDA 3.1.26.3) is a type of ribonuclease that recognizes dsRNA and cleaves it at specific targeted locations to transform them into mature RNAs.[2] These enzymes are a group of endoribonucleases that are characterized by their ribonuclease domain, which is labelled the RNase III domain.[3] They are ubiquitous compounds in the cell and play a major role in pathways such as RNA precursor synthesis, RNA Silencing, and the pnp autoregulatory mechanism.[4][5]

Types of RNase III

The RNase III superfamily is divided into four known classes: 1, 2, 3, and 4. Each class is defined by its domain structure.[6]

Class 1 RNase III
  • Class 1 RNase III enzymes have a homodimeric structure whose function is to cleave dsRNA into multiple subunits. It is a Mg2+-dependent endonuclease and is largely found in bacteria and bacteriophage. Class 1 RNase III have been found in Glomeromycotan fungi, which was suspected to be the result of horizontal gene transfer from cyanobacteria.[7] Among the RNases III in the class are the rnc from E. coli. Typically, class I enzymes possess a single RNase III domain (RIIID) followed by a dsRNA-binding domain (dsRBD).[6] They process precursors to ribosomal RNA, small nuclear RNA (snRNA) and small nucleolar RNA (snoRNA). The basic dsRNA cleavage function of Class 1 RNase III is retained in most of the organisms in which it is present. However, in a number of species the function has changed and taken on different or additional biological roles.[8]

Rnc (UniProtKB [https://www.uniprot.org/uniprot/P0A7Y0 P0A7Y0]) - E.Coli - this RNase III is involved in the processing of viral transcripts and some mRNAs through the cleavage of multiple areas on the dsRNA. This cleavage can be influenced by ribosomal protein presence.[9]

The variances of Class 1 RNase III, called Mini-III, are homodimeric enzymes and consist solely of the RNase III domains.[10]

Class 2 RNase III
  • Class II is defined by the presence of an N-terminal domain (NTD), a RIIID, and a dsRBD. Class II is found in some species of Fungi.[6] They process precursors to ribosomal RNA, small nuclear RNA (snRNA) and small nucleolar RNA (snoRNA)

Yeast nucleases with the Class 2 RNase III domain:[11]

RNT1 (UniProtKB [https://www.uniprot.org/uniprot/Q02555 Q02555]) - S. cerevisiae - this RNase III is involved in the transcription and processing of rDNA, the 3' end formation of U2 snRNA via cleavage of the terminal loop, cell wall stress response and degradation, and regulation of morphogenesis checkpoint genes.[12]

Pac1 (UniProtKB [https://www.uniprot.org/uniprot/P22192 P22192]) - S. pombe - this RNase III is located on chromosome II of the yeast nuclease and when over expressed, is directly involved in the sterility, lack of mating efficiency, abnormal mitotic cell cycle, and mutation suppression of the organism.[13]

Class 3 RNase III
  • Class 3 RNases III include the Drosha family of enzymes known to function in maturation of precursors to miRNA.[14]
Class 4 RNase III
  • Class 4 RNases III include the Dicer family of enzymes known to function in RNA interference (RNAi).[15] Class III RNases are S-RNase components. It is a component of the self-incompatibility system in Rosaceae, Solanaceae, and Plantaginaceae. They are recruited to cope with various environmental stress scenarios.[16]
  • Dicer enzymes process dsRNA subtrates into small RNA fragments of individual size ranging from 21-27 nucleotides in length.[17] Dicer has an N-terminal helicase/ATPase domain which is followed by another domain of an unknown function. It is centrally positioned PAZ domain and a C-terminal configuration which includes one dsRBD and two RNase III catalytic domains.[18] Interactions of Dicer occurs with other proteins, which includes TRBP, PACT, and Ago2.[19] RNAs that are produced by Dicer act as guides for a sequence of particular silencing of cognate genes through RNAi and related pathways.[17]

Human proteins containing RNase III domain

  • DICER1[20]
  • DROSHA[21]

See also

  • RncO

References

1. ^{{cite journal|last1=Filippov|first1=Valery|last2=Solovyev|first2=Victor|last3=Filippova|first3=Maria|last4=Gill|first4=Sarjeet S.|title=A novel type of RNase III family proteins in eukaryotes|journal=Gene|date=7 March 2000|volume=245|issue=1|pages=213–221|doi=10.1016/S0378-1119(99)00571-5|pmid=10713462}}
2. ^{{cite journal|last1=Zamore|first1=Phollip D.|title=Thirty-Three Years Later, a Glimpse at the Ribonuclease III Active Site|journal=Molecular Cell|date=December 2001|volume=8|issue=6|pages=1158–1160|doi=10.1016/S1097-2765(01)00418-X}}
3. ^{{cite journal|last1=Conrad|first1=Christian|last2=Rauhut|first2=Reinhard|title=Ribonuclease III: new sense from nuisance|journal=The International Journal of Biochemistry & Cell Biology|date=February 2002|volume=34|issue=2|pages=116–129|doi=10.1016/S1357-2725(01)00112-1}}
4. ^{{cite journal|last1=Inada|first1=T.|last2=Nakamura|first2=Y.|title=Lethal double-stranded RNA processing activity of ribonuclease III in the absence of SuhB protein of Escherichia coli|journal=Biochimie|date=1995|volume=77|issue=4|pages=294–302|doi=10.1016/0300-9084(96)88139-9}}
5. ^{{cite journal|last1=Park|first1=Hongmarn|last2=Yakhnin|first2=Helen|last3=Connolly|first3=Michael|last4=Romeo|first4=Tony|last5=Babitzke|first5=Paul|last6=Gourse|first6=R. L.|title=CsrA Participates in a PNPase Autoregulatory Mechanism by Selectively Repressing Translation of Transcripts That Have Been Previously Processed by RNase III and PNPase|journal=Journal of Bacteriology|date=15 December 2015|volume=197|issue=24|pages=3751–3759|doi=10.1128/JB.00721-15|pmid=26438818|pmc=4652041}}
6. ^Liang Y-H, Lavoie M, Comeau M-A, Elela SA, Ji X. Structure of a Eukaryotic RNase III Post-Cleavage Complex Reveals a Double- Ruler Mechanism for Substrate Selection. Molecular cell. 2014;54(3):431-444. doi:10.1016/j.molcel.2014.03.006.
7. ^Soon-Jae Lee, Mengxuan Kong, Paul Harrison, Mohamed Hijri; Conserved proteins of the RNA interference system in the arbuscular mycorrhizal fungus Rhizoglomus irregulare provide new insight into the evolutionary history of Glomeromycota, Genome Biology and Evolution, , evy002, https://doi.org/10.1093/gbe/evy002
8. ^{{cite journal|last1=Kreuze|first1=Jan F.|last2=Savenkov|first2=Eugene I.|last3=Cuellar|first3=Wilmer|last4=Li|first4=Xiangdong|last5=Valkonen|first5=Jari P. T.|title=Viral Class 1 RNase III Involved in Suppression of RNA Silencing|journal=Journal of Virology|date=1 June 2005|volume=79|issue=11|pages=7227–7238|doi=10.1128/JVI.79.11.7227-7238.2005|language=en|issn=0022-538X|pmid=15890961|pmc=1112141}}
9. ^{{cite web|title=rnc - Ribonuclease 3 - Escherichia coli (strain K12) - rnc gene & protein|url=https://www.uniprot.org/uniprot/P0A7Y0|website=www.uniprot.org|publisher=UniProt Consortium|accessdate=5 November 2016}}
10. ^{{cite journal|last1=Glow|first1=D.|last2=Pianka|first2=D.|last3=Sulej|first3=A. A.|last4=Kozlowski|first4= Lukasz P.|last5=Czarnecka|first5=J.|last6=Chojnowski|first6=G.|last7=Skowronek|first7=K. J.|last8=Bujnicki|first8=J. M.|title=Sequence-specific cleavage of dsRNA by Mini-III RNase|journal=Nucleic Acids Research|volume=43|issue=5|year=2015|pages=2864–2873|issn=0305-1048|doi=10.1093/nar/gkv009|pmid=25634891|pmc=4357697}}
11. ^{{cite journal|last1=Wu|first1=Chang-Xian|last2=Xu|first2=Xian-Jin|last3=Zheng|first3=Ke|last4=Liu|first4=Fang|last5=Yang|first5=Xu-Dong|last6=Chen|first6=Chuang-Fu|last7=Chen|first7=Huan-Chun|last8=Liu|first8=Zheng-Fei|title=Characterization of ribonuclease III from Brucella|journal=Gene|date=1 April 2016|volume=579|issue=2|pages=183–192|doi=10.1016/j.gene.2015.12.068|pmid=26778206}}
12. ^{{cite web|title=RNT1/YMR239C Overview|url=https://www.yeastgenome.org/locus/S000004852|website=www.yeastgenome.org|publisher=Stanford University|accessdate=5 November 2016}}
13. ^{{cite web|title=pac1 (SPBC119.11c)|url=http://www.pombase.org/spombe/result/SPBC119.11c|website=www.pombase.org|publisher=EMBL-EBI|accessdate=5 November 2016}}
14. ^{{cite journal | vauthors = Filippov V, Solovyev V, Filippova M, Gill SS | title = A novel type of RNase III family proteins in eukaryotes | journal = Gene | volume = 245 | issue = 1 | pages = 213–221 | date = Mar 2000 | pmid = 10713462 | pmc = | doi = 10.1016/S0378-1119(99)00571-5 }}
15. ^{{cite journal |vauthors=Bernstein E, Caudy AA, Hammond SM, Hannon GJ | title = Role for a bidentate ribonuclease in the initiation step of RNA interference | journal = Nature | volume = 409 | issue = 6818 | pages = 363–6 | year = 2001 | pmid = 11201747 | doi = 10.1038/35053110 | url = }} {{closed access}}
16. ^{{cite journal|last1=Rojas|first1=Hernán|last2=Floyd|first2=Brice|last3=Morriss|first3=Stephanie C.|last4=Bassham|first4=Diane|last5=MacIntosh|first5=Gustavo C.|last6=Goldraij|first6=Ariel|title=NnSR1, a class III non-S-RNase specifically induced in Nicotiana alata under phosphate deficiency, is localized in endoplasmic reticulum compartments|journal=Plant Science|date=1 July 2015|volume=236|pages=250–259|doi=10.1016/j.plantsci.2015.04.012|pmid=26025538}}
17. ^{{cite journal|last1=MacRae|first1=Ian J|last2=Doudna|first2=Jennifer A|title=Ribonuclease revisited: structural insights into ribonuclease III family enzymes|journal=Current Opinion in Structural Biology|date=February 2007|volume=17|issue=1|pages=138–145|doi=10.1016/j.sbi.2006.12.002|pmid=17194582}}
18. ^{{cite journal|last1=Redko|first1=Yulia|last2=Bechhofer|first2=David H.|last3=Condon|first3=Ciarán|title=Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis|journal=Molecular Microbiology|date=June 2008|volume=68|issue=5|pages=1096–1106|doi=10.1111/j.1365-2958.2008.06207.x|pmid=18363798}}
19. ^{{cite journal|last1=Nicholson|first1=Allen W.|title=Ribonuclease III mechanisms of double-stranded RNA cleavage|journal=Wiley Interdisciplinary Reviews: RNA|date=January 2014|volume=5|issue=1|pages=31–48|doi=10.1002/wrna.1195|pmid=24124076|pmc=3867540}}
20. ^{{cite web|title=Tissue expression of DICER1 - Summary|url=http://www.proteinatlas.org/ENSG00000100697-DICER1/tissue|website=www.proteinatlas.org|publisher=The Human Protein Atlas|accessdate=5 November 2016}}
21. ^{{cite web|title=Tissue expression of DROSHA - Summary|url=http://www.proteinatlas.org/ENSG00000113360-DROSHA/tissue|website=www.proteinatlas.org|publisher=The Human Protein Atlas|accessdate=5 November 2016}}
{{InterPro content|IPR000999}}

External links

  • {{MeshName|RNase+III}}
  • {{EC number|3.1.26.3}}
{{Esterases}}

4 : Ribonucleases|RNA|Protein biosynthesis|Protein domains

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 4:30:02