词条 | Separable algebra |
释义 |
In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension. Definition and First PropertiesA ring homomorphism (of unital, but not necessarily commutative rings) is called separable (or a separable extension) if the multiplication map admits a splitting{{dn|date=March 2019}} by means of a map of A-A-bimodules σ. Such a splitting σ is determined by its value σ(1). The condition that σ splits μ then is equivalent to and the condition to be a map of A-A-bimodules is equivalent to the following requirement for any a in A: Such an element p is called a separability idempotent, since it satisfies . ExamplesFor any commutative ring R, the (non-commutative) ring of n-by-n matrices is a separable R-algebra. For any , a separability idempotent is given by , where denotes the elementary matrix which is 0 except for the entry in position (i, j), which is 1. In particular, this shows that separability idempotents need not be unique. Separable algebras over a fieldIf is a field extension, then L is separable as an associative K-algebra if and only if the extension of fields is separable. If L/K has a primitive element with irreducible polynomial , then a separability idempotent is given by . The tensorands are dual bases for the trace map: if are the distinct K-monomorphisms of L into an algebraic closure of K, the trace mapping Tr of L into K is defined by . The trace map and its dual bases make explicit L as a Frobenius algebra over K. More generally, separable algebras over a field K can be classified as follows: they are the same as finite products of matrix algebras over finite-dimensional division algebras whose centers are finite-dimensional separable field extensions of the field K. In particular: Every separable algebra is itself finite-dimensional. If K is a perfect field --- for example a field of characteristic zero, or a finite field, or an algebraically closed field --- then every extension of K is separable so that separable K-algebras are finite products of matrix algebras over finite-dimensional division algebras over field K. In other words, if K is a perfect field, there is no difference between a separable algebra over K and a finite-dimensional semisimple algebra over K. It can be shown by a generalized theorem of Maschke that an associative K-algebra A is separable if for every field extension the algebra is semisimple. Group ringsIf K is commutative ring and G is a finite group such that the order of G is invertible in K, then the group ring K[G] is a separable K-algebra.[1] A separability idempotent is given by . Equivalent characterizations of separabilityThere are a several equivalent definitions of separable algebras. A K-algebra A is separable if and only if it is projective when considered as a left module of in the usual way.[2] Moreover, an algebra A is separable if and only if it is flat when considered as a right module of in the usual way. Separable extensions can also be characterized by means of split extensions: A is separable over K if all short exact sequences of A-A-bimodules that are split as A-K-bimodules also split as A-A-bimodules. Indeed, this condition is necessary since the multiplication mapping arising in the definition above is a A-A-bimodule epimorphism, which is split as an A-K-bimodule map by the right inverse mapping given by . The converse can be proven by a judicious use of the separability idempotent (similarly to the proof of Maschke's theorem, applying its components within and without the splitting maps).[3] Equivalently, the relative Hochschild cohomology groups of (R,S) in any coefficient bimodule M is zero for n > 0. Examples of separable extensions are many including first separable algebras where R = separable algebra and S = 1 times the ground field. Any ring R with elements a and b satisfying ab = 1, but ba different from 1, is a separable extension over the subring S generated by 1 and bRa. Relation to Frobenius algebrasA separable algebra is said to be strongly separable if there exists a separability idempotent that is symmetric, meaning An algebra is strongly separable if and only if its trace form is nondegenerate, thus making the algebra into a particular kind of Frobenius algebra called a symmetric algebra (not to be confused with the symmetric algebra arising as the quotient of the tensor algebra). If K is commutative, A is a finitely generated projective separable K-module, then A is a symmetric Frobenius algebra.[4] Relation to formally unramified and formally étale extensionsAny separable extension A / K of commutative rings is formally unramified. The converse holds if A is a finitely generated K-algebra.[5] A separable flat (commutative) K-algebra A is formally étale.[6] Further resultsA theorem in the area is that of J. Cuadra that a separable Hopf-Galois extension R | S has finitely generated natural S-module R. A fundamental fact about a separable extension R | S is that it is left or right semisimple extension: a short exact sequence of left or right R-modules that is split as S-modules, is split as R-modules. In terms of G. Hochschild's relative homological algebra, one says that all R-modules are relative (R,S)-projective. Usually relative properties of subrings or ring extensions, such as the notion of separable extension, serve to promote theorems that say that the over-ring shares a property of the subring. For example, a separable extension R of a semisimple algebra S has R semisimple, which follows from the preceding discussion. There is the celebrated Jans theorem that a finite group algebra A over a field of characteristic p is of finite representation type if and only if its Sylow p-subgroup is cyclic: the clearest proof is to note this fact for p-groups, then note that the group algebra is a separable extension of its Sylow p-subgroup algebra B as the index is coprime to the characteristic. The separability condition above will imply every finitely generated A-module M is isomorphic to a direct summand in its restricted, induced module. But if B has finite representation type, the restricted module is uniquely a direct sum of multiples of finitely many indecomposables, which induce to a finite number of constituent indecomposable modules of which M is a direct sum. Hence A is of finite representation type if B is. The converse is proven by a similar argument noting that every subgroup algebra B is a B-bimodule direct summand of a group algebra A. References1. ^{{harvtxt|Ford|2017|loc=§4.2}} 2. ^{{harvtxt|Reiner|2003|loc=p. 102}} 3. ^{{harvtxt|Ford|2017|Theorem 4.4.1}} 4. ^{{harvtxt|Endo|Watanabe|1967|loc=Theorem 4.2}}. If A is commutative, the proof is simpler, see {{harvtxt|Kadison|1999|loc=Lemma 5.11}} 5. ^{{harvtxt|Ford|2017|loc=Corollary 4.7.2, Theorem 8.3.6}} 6. ^{{harvtxt|Ford|2017|loc=Corollary 4.7.3}}
1 : Algebras |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。