请输入您要查询的百科知识:

 

词条 Serre's modularity conjecture
释义

  1. Formulation

  2. Optimal level and weight

  3. Proof

  4. Notes

  5. References

  6. External links

In mathematics, Serre's modularity conjecture, introduced by {{harvs|first=Jean-Pierre|last=Serre|authorlink=Jean-Pierre Serre|year1=1975|year2=1987|txt}}, states that an odd, irreducible, two-dimensional Galois representation over a finite field arises from a modular form. A stronger version of this conjecture specifies the weight and level of the modular form. The conjecture was proved by Chandrashekhar Khare in the level 1 case,[1] in 2005 and later in 2008 a proof of the full conjecture was worked out jointly by Khare and Jean-Pierre Wintenberger.[2]

Formulation

The conjecture concerns the absolute Galois group of the rational number field .

Let be an absolutely irreducible, continuous, two-dimensional representation of over a finite field .

Additionally, assume is odd, meaning the image of complex conjugation has determinant -1.

To any normalized modular eigenform

of level , weight , and some Nebentype character

,

a theorem due to Shimura, Deligne, and Serre-Deligne attaches to a representation

where is the ring of integers in a finite extension of . This representation is characterized by the condition that for all prime numbers , coprime to we have

and

Reducing this representation modulo the maximal ideal of gives a mod representation of .

Serre's conjecture asserts that for any representation as above, there is a modular eigenform such that

.

The level and weight of the conjectural form are explicitly conjectured in Serre's article. In addition, he derives a number of results from this conjecture, among them Fermat's Last Theorem and the now-proven Taniyama–Weil (or Taniyama–Shimura) conjecture, now known as the modularity theorem (although this implies Fermat's Last Theorem, Serre proves it directly from his conjecture).

Optimal level and weight

The strong form of Serre's conjecture describes the level and weight of the modular form.

The optimal level is the Artin conductor of the representation, with the power of removed.

Proof

A proof of the level 1 and small weight cases of the conjecture was obtained in 2004 by Chandrashekhar Khare and Jean-Pierre Wintenberger,[3] and by Luis Dieulefait,[4] independently.

In 2005, Chandrashekhar Khare obtained a proof of the level 1 case of Serre conjecture,[5] and in 2008 a proof of the full conjecture in collaboration with Jean-Pierre Wintenberger.[6]

Notes

1. ^{{Citation |last=Khare |first=Chandrashekhar |title=Serre's modularity conjecture: The level one case |year=2006 |journal=Duke Mathematical Journal |volume=134 |issue=3 |pages=557–589 |doi=10.1215/S0012-7094-06-13434-8 }}.
2. ^{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 }} and {{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 }}.
3. ^{{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=On Serre's reciprocity conjecture for 2-dimensional mod p representations of Gal(Q/Q) |journal=Annals of Mathematics |volume=169 |issue=1 |pages=229–253 |doi= 10.4007/annals.2009.169.229}}.
4. ^{{Citation |last=Dieulefait |first=Luis |year=2007 |title=The level 1 weight 2 case of Serre's conjecture |journal=Revista Matemática Iberoamericana |volume=23 |issue=3 |pages=1115–1124 |url=http://projecteuclid.org/euclid.rmi/1204128312 |doi=10.4171/rmi/525|arxiv=math/0412099 }}.
5. ^{{Citation |last=Khare |first=Chandrashekhar |title=Serre's modularity conjecture: The level one case |year=2006 |journal=Duke Mathematical Journal |volume=134 |issue=3 |pages=557–589 |doi=10.1215/S0012-7094-06-13434-8 }}.
6. ^{{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 }} and {{Citation |last=Khare |first=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 }}.

References

  • {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | department=Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974) |mr=0382173 | year=1975 | journal=Astérisque | issn=0303-1179 | volume=24–25 | title=Valeurs propres des opérateurs de Hecke modulo l | pages=109–117}}
  • {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Sur les représentations modulaires de degré 2 de Gal({{overline|Q}}/Q) | doi=10.1215/S0012-7094-87-05413-5 |mr=885783 | year=1987 | journal=Duke Mathematical Journal | issn=0012-7094 | volume=54 | issue=1 | pages=179–230}}
  • {{Citation | last1=Stein | first1=William A. | last2=Ribet | first2=Kenneth A. | editor1-last=Conrad | editor1-first=Brian | editor2-last=Rubin | editor2-first=Karl | title=Arithmetic algebraic geometry (Park City, UT, 1999) | publisher=American Mathematical Society | location=Providence, R.I. | series=IAS/Park City Math. Ser. | isbn=978-0-8218-2173-2 |mr=1860042 | year=2001 | volume=9 | chapter=Lectures on Serre's conjectures | pages=143–232}}

External links

  • Serre's Modularity Conjecture 50 minute lecture by Ken Ribet given on October 25, 2007 ( slides PDF, [https://web.archive.org/web/20110717033621/http://www.cirm.univ-mrs.fr/videos/2007/exposes/23/Ribet.pdf other version of slides] PDF)
  • [https://web.archive.org/web/20011120190728/http://modular.fas.harvard.edu/papers/serre/ribet-stein.pdf Lectures on Serre's conjectures]

2 : Modular forms|Theorems in number theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 8:46:03