请输入您要查询的百科知识:

 

词条 SK3
释义

  1. Structure

  2. Expression

  3. Physiology

  4. Pathology

  5. References

  6. Further reading

{{Infobox_gene}}SK3 (small conductance calcium-activated potassium channel 3) also known as KCa2.3 is a protein that in humans is encoded by the KCNN3 gene.[1][2]

SK3 is a small-conductance calcium-activated potassium channel partly responsible for the calcium-dependent after hyperpolarisation current (IAHP). It belongs to a family of channels known as small-conductance potassium channels, which consists of three members – SK1, SK2 and SK3 (encoded by the KCNN1, 2 and 3 genes respectively), which share a 60-70% sequence identity.[3] These channels have acquired a number of alternative names, however a NC-IUPHAR has recently achieved consensus on the best names, KCa2.1 (SK1), KCa2.2 (SK2) and KCa2.3 (SK3).[2] Small conductance channels are responsible for the medium and possibly the slow components of the IAHP.

Structure

KCa2.3 contains 6 transmembrane domains, a pore-forming region, and intracellular N- and C- termini[3][4] and is readily blocked by apamin. The gene for KCa2.3, KCNN3, is located on chromosome 1q21.

Expression

KCa2.3 is found in the central nervous system (CNS), muscle, liver, pituitary, prostate, kidney, pancreas and vascular endothelium tissues.[5] KCa2.3 is most abundant in regions of the brain, but has also been found to be expressed in significant levels in many other peripheral tissues, particularly those rich in smooth muscle, including the rectum, corpus cavernosum, colon, small intestine and myometrium.[3]

The expression level of KCNN3 is dependent on hormonal regulation, particularly by the sex hormone estrogen. Estrogen not only enhances transcription of the KCNN3 gene, but also affects the activity of KCa2.3 channels on the cell membrane. In GABAergic preoptic area neurons, estrogen enhanced the ability of α1 adrenergic receptors to inhibit KCa2.3 activity, increasing cell excitability.[6] Links between hormonal regulation of sex organ function and KCa2.3 expression have been established. The expression of KCa2.3 in the corpus cavernosum in patients undergoing estrogen treatment as part of gender reassignment surgery was found to be increased up to 5-fold.[3] The influence of estrogen on KCa2.3 has also been established in the hypothalamus, uterine and skeletal muscle.[6]

Physiology

KCa2.3 channels play a major role in human physiology, particularly in smooth muscle relaxation. The expression level of KCa2.3 channels in the endothelium influences arterial tone by setting arterial smooth muscle membrane potential. The sustained activity of KCa2.3 channels induces a sustained hyperpolarisation of the endothelial cell membrane potential, which is then carried to nearby smooth muscle through gap junctions.[7] Blocking the KCa2.3 channel or suppressing KCa2.3 expression causes a greatly increased tone in resistance arteries, producing an increase in peripheral resistance and blood pressure.

Pathology

Mutations in KCa2.3 are suspected to be a possible underlying cause for several neurological disorders, including schizophrenia, bipolar disorder, Alzheimer's disease, anorexia nervosa and ataxia[8][9][10] as well as myotonic muscular dystrophy.[11]

References

1. ^{{cite journal | vauthors = Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH, Gutman GA, Crocq MA, Ganguli R, Nimgaonkar V, Morris-Rosendahl DJ, Gargus JJ | title = Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? | journal = Mol. Psychiatry | volume = 3 | issue = 1 | pages = 32–7 |date=January 1998 | pmid = 9491810 | doi = 10.1038/sj.mp.4000353}}
2. ^{{cite journal | vauthors = Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H | title = International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels | journal = Pharmacol. Rev. | volume = 57 | issue = 4 | pages = 463–72 |date=December 2005 | pmid = 16382103 | doi = 10.1124/pr.57.4.9 }}
3. ^{{cite journal | vauthors = Chen MX, Gorman SA, Benson B, Singh K, Hieble JP, Michel MC, Tate SN, Trezise DJ | title = Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum | journal = Naunyn Schmiedebergs Arch. Pharmacol. | volume = 369 | issue = 6 | pages = 602–15 |date=June 2004 | pmid = 15127180 | doi = 10.1007/s00210-004-0934-5 }}
4. ^{{cite journal | vauthors = Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP | title = Small-conductance, calcium-activated potassium channels from mammalian brain | journal = Science | volume = 273 | issue = 5282 | pages = 1709–14 |date=September 1996 | pmid = 8781233 | doi = 10.1126/science.273.5282.1709 }}
5. ^{{cite journal | vauthors = Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V | title = Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications | journal = Curr. Med. Chem. | volume = 14 | issue = 13 | pages = 1437–57 | year = 2007 | pmid = 17584055 | doi = 10.2174/092986707780831186 }}
6. ^{{cite journal | vauthors = Jacobson D, Pribnow D, Herson PS, Maylie J, Adelman JP | title = Determinants contributing to estrogen-regulated expression of SK3 | journal = Biochem. Biophys. Res. Commun. | volume = 303 | issue = 2 | pages = 660–8 |date=April 2003 | pmid = 12659870 | doi = 10.1016/S0006-291X(03)00408-X| url = }}
7. ^{{cite journal | vauthors = Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT | title = Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure | journal = Circ. Res. | volume = 93 | issue = 2 | pages = 124–31 |date=July 2003 | pmid = 12805243 | doi = 10.1161/01.RES.0000081980.63146.69 }}
8. ^{{cite journal | vauthors = Koronyo-Hamaoui M, Gak E, Stein D, Frisch A, Danziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Apter A, Goldman B, Barkai G, Weizman A | title = CAG repeat polymorphism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa: a case-control study of female patients and several ethnic groups in the Israeli Jewish population | journal = Am. J. Med. Genet. B Neuropsychiatr. Genet. | volume = 131B | issue = 1 | pages = 76–80 |date=November 2004 | pmid = 15389773 | doi = 10.1002/ajmg.b.20154 }}
9. ^{{cite journal | vauthors = Koronyo-Hamaoui M, Frisch A, Stein D, Denziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, Mimouni M, Ram A, Zubery E, Jeczmien P, Apter A, Weizman A, Gak E | title = Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa | journal = J Psychiatr Res | volume = 41 | issue = 1–2 | pages = 160–7 | year = 2007 | pmid = 16157352 | doi = 10.1016/j.jpsychires.2005.07.010 }}
10. ^{{cite journal | vauthors = Tomita H, Shakkottai VG, Gutman GA, Sun G, Bunney WE, Cahalan MD, Chandy KG, Gargus JJ | title = Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia | journal = Mol. Psychiatry | volume = 8 | issue = 5 | pages = 524–35, 460 |date=May 2003 | pmid = 12808432 | doi = 10.1038/sj.mp.4001271 }}
11. ^{{cite journal | vauthors = Kimura T, Takahashi MP, Fujimura H, Sakoda S | title = Expression and distribution of a small-conductance calcium-activated potassium channel (SK3) protein in skeletal muscles from myotonic muscular dystrophy patients and congenital myotonic mice | journal = Neurosci. Lett. | volume = 347 | issue = 3 | pages = 191–5 |date=August 2003 | pmid = 12875918 | doi = 10.1016/S0304-3940(03)00638-4| url = }}

Further reading

{{refbegin|35em}}
  • {{cite journal |vauthors=Glatt SJ, Faraone SV, Tsuang MT |title=CAG-repeat length in exon 1 of KCNN3 does not influence risk for schizophrenia or bipolar disorder: a meta-analysis of association studies. |journal=Am. J. Med. Genet. B Neuropsychiatr. Genet. |volume=121B |issue= 1 |pages= 14–20 |year= 2003 |pmid= 12898569 |doi= 10.1002/ajmg.b.20048 }}
  • {{cite journal |vauthors=Ivković M, Ranković V, Tarasjev A, etal |title=Schizophrenia and polymorphic CAG repeats array of calcium-activated potassium channel (KCNN3) gene in Serbian population. |journal=Int. J. Neurosci. |volume=116 |issue= 2 |pages= 157–64 |year= 2006 |pmid= 16393881 |doi= 10.1080/00207450341514 }}
  • {{cite journal |vauthors=Uhl GR, Liu QR, Drgon T, etal |title=Molecular genetics of successful smoking cessation: convergent genome-wide association study results. |journal=Arch. Gen. Psychiatry |volume=65 |issue= 6 |pages= 683–93 |year= 2008 |pmid= 18519826 |doi= 10.1001/archpsyc.65.6.683 |pmc=2430596 }}
  • {{cite journal |vauthors=Curtain R, Sundholm J, Lea R, etal |title=Association analysis of a highly polymorphic CAG Repeat in the human potassium channel gene KCNN3 and migraine susceptibility. |journal=BMC Med. Genet. |volume=6|pages= 32 |year= 2005 |pmid= 16162291 |doi= 10.1186/1471-2350-6-32 |pmc=1236929 }}
  • {{cite journal |vauthors=Dagle JM, Lepp NT, Cooper ME, etal |title=Determination of genetic predisposition to patent ductus arteriosus in preterm infants. |journal=Pediatrics |volume=123 |issue= 4 |pages= 1116–23 |year= 2009 |pmid= 19336370 |doi= 10.1542/peds.2008-0313 |pmc=2734952 }}
  • {{cite journal |vauthors=Rinaldi F, Botta A, Vallo L, etal |title=Analysis of Single Nucleotide Polymorphisms (SNPs) of the small-conductance calcium activated potassium channel (SK3) gene as genetic modifier of the cardiac phenotype in myotonic dystrophy type 1 patients. |journal=Acta Myol |volume=27 |issue= |pages= 82–9 |year= 2008 |pmid= 19472917 |pmc=2858941 |doi= }}
  • {{cite journal |vauthors=Decimo I, Roncarati R, Grasso S, etal |title=SK3 trafficking in hippocampal cells: the role of different molecular domains. |journal=Biosci. Rep. |volume=26 |issue= 6 |pages= 399–412 |year= 2006 |pmid= 17061167 |doi= 10.1007/s10540-006-9029-5 }}
  • {{cite journal |vauthors=Laurent C, Niehaus D, Bauché S, etal |title=CAG repeat polymorphisms in KCNN3 (HSKCa3) and PPP2R2B show no association or linkage to schizophrenia. |journal=Am. J. Med. Genet. B Neuropsychiatr. Genet. |volume=116B |issue= 1 |pages= 45–50 |year= 2003 |pmid= 12497613 |doi= 10.1002/ajmg.b.10797 }}
  • {{cite journal |vauthors=Ritsner M, Amir S, Koronyo-Hamaoui M, etal |title=Association study of CAG repeats in the KCNN3 gene in Israeli patients with major psychosis. |journal=Psychiatr. Genet. |volume=13 |issue= 3 |pages= 143–50 |year= 2003 |pmid= 12960745 |doi= 10.1097/00041444-200309000-00002}}
  • {{cite journal |vauthors=Gao Y, Chotoo CK, Balut CM, etal |title=Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1. |journal=J. Biol. Chem. |volume=283 |issue= 14 |pages= 9049–59 |year= 2008 |pmid= 18227067 |doi= 10.1074/jbc.M708022200 |pmc=2431042 }}
  • {{cite journal |vauthors=Zhou Z, Jiang DJ, Jia SJ, etal |title=Down-regulation of endogenous nitric oxide synthase inhibitors on endothelial SK3 expression. |journal=Vascul. Pharmacol. |volume=47 |issue= 5–6 |pages= 265–71 |year= 2007|pmid= 17869187 |doi= 10.1016/j.vph.2007.08.003 }}
  • {{cite journal |vauthors=Koronyo-Hamaoui M, Gak E, Stein D, etal |title=CAG repeat polymorphism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa: a case-control study of female patients and several ethnic groups in the Israeli Jewish population. |journal=Am. J. Med. Genet. B Neuropsychiatr. Genet. |volume=131B |issue= 1 |pages= 76–80 |year= 2004 |pmid= 15389773 |doi= 10.1002/ajmg.b.20154 }}
  • {{cite journal |vauthors=Kolski-Andreaco A, Tomita H, Shakkottai VG, etal |title=SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. |journal=J. Biol. Chem. |volume=279 |issue= 8 |pages= 6893–904 |year= 2004 |pmid= 14638680 |doi= 10.1074/jbc.M311725200 }}
  • {{cite journal |vauthors=Piotrowska AP, Solari V, Puri P |title=Distribution of Ca2+-activated K channels, SK2 and SK3, in the normal and Hirschsprung's disease bowel. |journal=J. Pediatr. Surg. |volume=38 |issue= 6 |pages= 978–83 |year= 2003 |pmid= 12778407 |doi=10.1016/S0022-3468(03)00138-6 }}
  • {{cite journal |vauthors=Hong XH, Xu CT, Yang Q, Wu CR |title=[Transmission disequilibrium analysis of 1137-1140 Del GTGA frameshift mutation within the KCNN3 gene and schizophrenia based on family trios] |journal=Zhonghua Yi Xue Yi Chuan Xue Za Zhi |volume=22 |issue= 4 |pages= 441–3 |year= 2005 |pmid= 16086287 |doi= }}
  • {{cite journal |vauthors=Rhodes JD, Monckton DG, McAbney JP, etal |title=Increased SK3 expression in DM1 lens cells leads to impaired growth through a greater calcium-induced fragility. |journal=Hum. Mol. Genet. |volume=15 |issue= 24 |pages= 3559–68 |year= 2006 |pmid= 17101631 |doi= 10.1093/hmg/ddl432 }}
  • {{cite journal |vauthors=Tomita H, Shakkottai VG, Gutman GA, etal |title=Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. |journal=Mol. Psychiatry |volume=8 |issue= 5 |pages= 524–35, 460 |year= 2003 |pmid= 12808432 |doi= 10.1038/sj.mp.4001271 }}
  • {{cite journal |vauthors=Monaghan AS, Benton DC, Bahia PK, etal |title=The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. |journal=J. Biol. Chem. |volume=279 |issue= 2 |pages= 1003–9 |year= 2004 |pmid= 14559917 |doi= 10.1074/jbc.M308070200 }}
  • {{cite journal |vauthors=de Krom M, Staal WG, Ophoff RA, etal |title=A common variant in DRD3 receptor is associated with autism spectrum disorder. |journal=Biol. Psychiatry |volume=65 |issue= 7 |pages= 625–30 |year= 2009 |pmid= 19058789 |doi= 10.1016/j.biopsych.2008.09.035 }}
{{refend}}{{Ion channels|g3}}

2 : Neurochemistry|Ion channels

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/25 14:36:41