请输入您要查询的百科知识:

 

词条 SMC protein
释义

  1. Classification

      Eukaryotic SMCs   Prokaryotic SMCs 

  2. Molecular structure

     Primary structure  Secondary and tertiary structure 

  3. Genes

  4. See also

  5. References

SMC proteins represent a large family of ATPases that participate in many aspects of higher-order chromosome organization and dynamics.[1][2][3] SMC stands for Structural Maintenance of Chromosomes.

Classification

Eukaryotic SMCs

Eukaryotes have at least six SMC proteins in individual organisms, and they form three distinct heterodimers with specialized functions:

  • A pair of SMC1 and SMC3 constitutes the core subunits of the cohesin complexes involved in sister chromatid cohesion.[4][5][6]
  • Likewise, a pair of SMC2 and SMC4 acts as the core of the condensin complexes implicated in chromosome condensation.[7][8]
  • A dimer composed of SMC5 and SMC6 functions as part of a yet-to-be-named complex implicated in DNA repair and checkpoint responses.[9]

Each complex contains a distinct set of non-SMC regulatory subunits. Some organisms have variants of SMC proteins. For instance, mammals have a meiosis-specific variant of SMC1, known as SMC1β.[10] The nematode Caenorhabditis elegans has an SMC4-variant that has a specialized role in dosage compensation.[11]

subfamily complex S. cerevisiae S. pombe C. elegans D. melanogaster vertebrates
SMC1α cohesin Smc1 Psm1 SMC-1 DmSmc1 SMC1α
SMC2 condensin Smc2 Cut14 MIX-1 DmSmc2 CAP-E/SMC2
SMC3 cohesin Smc3 Psm3 SMC-3 DmSmc3 SMC3
SMC4 condensin Smc4 Cut3 SMC-4 DmSmc4 CAP-C/SMC4
SMC5 SMC5-6 Smc5 Smc5 C27A2.1 CG32438 SMC5
SMC6 SMC5-6 Smc6 Smc6/Rad18 C23H4.6, F54D5.14 CG5524 SMC6
SMC1β cohesin (meiotic) - - - - SMC1β
SMC4 variant dosage compensation complex - - DPY-27 - -

Prokaryotic SMCs

SMC proteins are conserved from bacteria to humans. Most bacteria have a single SMC protein in individual species that forms a homodimer.[12] In a subclass of Gram-negative bacteria including Escherichia coli, a distantly related protein known as MukB plays an equivalent role.[13]

Molecular structure

Primary structure

SMC proteins are 1,000-1,500 amino-acid long. They have a modular structure that is composed of the following domains:

  1. Walker A ATP-binding motif
  2. coiled-coil region I
  3. hinge region
  4. coiled-coil region II
  5. Walker B ATP-binding motif; signature motif

Secondary and tertiary structure

SMC dimers form a V-shaped molecule with two long coiled-coil arms.[14][15] To make such a unique structure, an SMC protomer is self-folded through anti-parallel coiled-coil interactions, forming a rod-shaped molecule. At one end of the molecule, the N-terminal and C-terminal domains together form an ATP-binding domain. The other end is called a hinge domain. Two protomers then dimerize through their hinge domains and assemble a V-shaped dimer.[16][17] The length of the coiled-coil arms is ~50 nm long. Such long "antiparallel" coiled-coils are very rare, and found only among SMC proteins (and its relatives such as Rad50). The ATP-binding domain of SMC proteins is structurally related to that of ABC transporters, a large family of transmembrane proteins that actively transport small molecules across cellular membranes. It is thought that the cycle of ATP binding and hydrolysis modulates the cycle of closing and opening of the V-shaped molecule, but the detailed mechanisms of action of SMC proteins remain to be determined.

Genes

The following human genes encode SMC proteins:

  • SMC1A
  • SMC1B
  • SMC2
  • SMC3
  • SMC4
  • SMC5
  • SMC6

See also

{{Commons category|SMC proteins}}
  • cohesin
  • condensin
  • Cornelia de Lange Syndrome

References

1. ^{{cite journal |vauthors=Losada A, Hirano T |title=Dynamic molecular linkers of the genome: the first decade of SMC proteins |journal= Genes Dev |volume= 19 |issue= 11 |pages= 1269–1287 |year= 2005| doi = 10.1101/gad.1320505 |pmid= 15937217}}
2. ^{{cite journal |vauthors=Nasmyth K, Haering CH | title = The structure and function of SMC and kleisin complexes.| journal = Annu. Rev. Biochem. | volume = 74 | pages = 595–648| year = 2005 | pmid = 15952899 | doi=10.1146/annurev.biochem.74.082803.133219}}
3. ^{{cite journal |vauthors=Huang CE, Milutinovich M, Koshland D |title=Rings, bracelet or snaps: fashionable alternatives for Smc complexes|journal= Philos Trans R Soc Lond B Biol Sci |volume= 360 |issue= 1455 |pages= 537–42 |year= 2005| doi = 10.1098/rstb.2004.1609 |pmid= 15897179 |pmc=1569475}}
4. ^{{cite journal |vauthors=Michaelis C, Ciosk R, Nasmyth K | title = Cohesins: chromosomal proteins that prevent premature separation of sister chromatids | journal =Cell| volume = 91 | issue = 1 | pages = 35–45| year = 1997 | pmid = 9335333 | doi=10.1016/S0092-8674(01)80007-6}}
5. ^{{cite journal |vauthors=Guacci V, Koshland D, Strunnikov A | title = A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae | journal = Cell | volume = 91 | issue = 1 | pages = 47–57| year = 1998 | pmid = 9335334 | pmc=2670185 | doi=10.1016/S0092-8674(01)80008-8}}
6. ^{{cite journal |vauthors=Losada A, Hirano M, Hirano T | title = Identification of Xenopus SMC protein complexes required for sister chromatid cohesion | journal = Genes Dev. | volume = 12 | issue = 13 | pages = 1986–1997| year = 1998 | pmid = 9649503 | pmc = 316973 | doi=10.1101/gad.12.13.1986}}
7. ^{{cite journal |vauthors=Hirano T, Kobayashi R, Hirano M | title = Condensins, chromosome condensation complex containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein | journal = Cell | volume = 89 | issue = 4 | pages = 511–21 | year = 1997 | pmid = 9160743 | doi=10.1016/S0092-8674(00)80233-0}}
8. ^{{cite journal |vauthors=Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T | title = Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells | journal = Cell| volume = 115 | issue = 1 | pages = 109–21 | year = 2003 | pmid = 14532007 | doi=10.1016/S0092-8674(03)00724-4}}
9. ^{{cite journal |vauthors=Fousteri MI, Lehmann AR | title = A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein | journal = EMBO J. | volume =19 | issue = 7 | pages = 1691–1702 | year = 2000 | pmid = 10747036 | pmc = 310237 | doi=10.1093/emboj/19.7.1691}}
10. ^{{cite journal |vauthors=Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R | title = Novel meiosis-specific isoform of mammalian SMC1 | journal = Mol. Cell. Biol. | volume = 21 | issue = 20 | pages = 6984–6998| year = 2001 | pmid = 11564881 | doi=10.1128/MCB.21.20.6984-6998.2001 | pmc=99874}}
11. ^{{cite journal |vauthors=Chuang PT, Albertson DG, Meyer BJ | title = DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome | journal = Cell | volume = 79 | issue = 3 | pages = 459–474| year = 1994 | pmid = 7954812 | doi=10.1016/0092-8674(94)90255-0}}
12. ^{{cite journal |vauthors=Britton RA, Lin DC, Grossman AD | title = Characterization of a prokaryotic SMC protein involved in chromosome partitioning| journal = Genes Dev.| volume = 12 | issue = 9 | pages = 1254–1259| year = 1998 | pmid = 9573042 | pmc = 316777| doi=10.1101/gad.12.9.1254}}
13. ^{{cite journal |vauthors=Niki H, Jaffé A, Imamura R, Ogura T, Hiraga S | title = The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli| journal = EMBO J.| volume = 10 | issue = 1 | pages = 183–193| year = 1991 | pmid = 1989883| pmc = 452628| doi = 10.1002/j.1460-2075.1991.tb07935.x}}
14. ^{{cite journal |vauthors=Melby TE, Ciampaglio CN, Briscoe G, Erickson HP | title = The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge| journal = J. Cell Biol.| volume = 142 | issue = 6 | pages = 1595–1604 | year = 1998 | pmid = 9744887 | pmc = 2141774| doi=10.1083/jcb.142.6.1595}}
15. ^{{cite journal |vauthors=Anderson DE, Losada A, Erickson HP, Hirano T | title = Condensin and cohesin display different arm conformations with characteristic hinge angles| journal = J. Cell Biol.| volume = 156 | issue = 6 | pages = 419–424 | year = 2002 | pmid = 11815634 | pmc = 2173330| doi=10.1083/jcb.200111002}}
16. ^{{cite journal |vauthors=Haering CH, Löwe J, Hochwagen A, Nasmyth K | title = Molecular architecture of SMC proteins and the yeast cohesin complex.| journal = Mol. Cell| volume = 9 | issue = 4 | pages = 773–788| year = 2002 | pmid = 11983169 | doi=10.1016/S1097-2765(02)00515-4}}
17. ^{{cite journal |vauthors=Hirano M, Hirano T | title = Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA| journal = EMBO J.| volume = 21 | issue = 21 | pages = 5733–5744| year = 2002 | pmid = 12411491 | pmc = 131072| doi=10.1093/emboj/cdf575}}
{{Nucleus}}{{Acid anhydride hydrolases}}{{Enzymes}}{{Portal bar|Molecular and Cellular Biology|border=no}}

4 : EC 3.6.3|Cell biology|Mitosis|Cell cycle

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 10:31:06