请输入您要查询的百科知识:

 

词条 Strobogrammatic number
释义

  1. Nonstandard systems

  2. Popular culture

  3. See also

  4. References

  5. External links

{{refimprove|date=September 2012}}

A strobogrammatic number is a number whose numeral is rotationally symmetric, so that it appears the same when rotated 180 degrees. In other words, the numeral looks the same right-side up and upside down (e.g., 69, 96, 1001).[1] A strobogrammatic prime is a strobogrammatic number that is also a prime number, i.e., a number that is only divisible by one and itself (e.g., 11).[2] It is a type of ambigram, words and numbers that retain their meaning when viewed from a different perspective, such as palindromes.[3]

When written using standard characters (ASCII), the numbers, 0, 1, 8 are symmetrical around the horizontal axis, and 6 and 9 are the same as each other when rotated 180 degrees. In such a system, the first few strobogrammatic numbers are:

0, 1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001, 1111, 1691, 1881, 1961, 6009, 6119, 6699, 6889, 6969, 8008, 8118, 8698, 8888, 8968, 9006, 9116, 9696, 9886, 9966, ... {{OEIS|id=A000787}}

The first few strobogrammatic primes are:

11, 101, 181, 619, 16091, 18181, 19861, 61819, 116911, 119611, 160091, 169691, 191161, 196961, 686989, 688889, ... {{OEIS|id=A007597}}

The years 1881 and 1961 were the most recent strobogrammatic years; the next strobogrammatic year will be 6009.

Although amateur aficionados of mathematics are quite interested in this concept, professional mathematicians generally are not. Like the concept of repunits and palindromic numbers, the concept of strobogrammatic numbers is base-dependent (expanding to base-sixteen, for example, produces the additional symmetries of 3/E; some variants of duodecimal systems also have this and a symmetrical x). Unlike palindromes, it is also font dependent. The concept of strobogrammatic numbers is not neatly expressible algebraically, the way that the concept of repunits is, or even the concept of palindromic numbers.

Nonstandard systems

The strobogrammatic properties of a given number vary by typeface. For instance, in an ornate serif type, the numbers 2 and 7 may be rotations of each other; however, in a seven-segment display emulator, this correspondence is lost, but 2 and 5 are both symmetrical. There are sets of glyphs for writing numbers in base 10, such as the Devanagari and Gurmukhi of India in which the numbers listed above are not strobogrammatic at all.

In binary, given a glyph for 1 consisting of a single line without hooks or serifs and a sufficiently symmetric glyph for 0, the strobogrammatic numbers are the same as the palindromic numbers and also the same as the dihedral numbers. In particular, all Mersenne numbers are strobogrammatic in binary. Dihedral primes that do not use 2 or 5 are also strobogrammatic primes in binary.

The natural numbers 0 and 1 are strobogrammatic in every base, with a sufficiently symmetric font, and they are the only natural numbers with this feature, since every natural number larger than one is represented by 10 in its own base.

In duodecimal, the strobogrammatic numbers are (using inverted two and three for ten and eleven, respectively)

0, 1, 8, 11, 2ᘔ, 3Ɛ, 69, 88, 96, ᘔ2, Ɛ3, 101, 111, 181, 20ᘔ, 21ᘔ, 28ᘔ, 30Ɛ, 31Ɛ, 38Ɛ, 609, 619, 689, 808, 818, 888, 906, 916, 986, ᘔ02, ᘔ12, ᘔ82, Ɛ03, Ɛ13, Ɛ83, ...

Examples of strobogrammatic primes in duodecimal are:

11, 3Ɛ, 111, 181, 30Ɛ, 12ᘔ1, 13Ɛ1, 311Ɛ, 396Ɛ, 3ᘔ2Ɛ, 11111, 11811, 130Ɛ1, 16191, 18881, 1Ɛ831, 3000Ɛ, 3181Ɛ, 328ᘔƐ, 331ƐƐ, 338ƐƐ, 3689Ɛ, 3818Ɛ, 3888Ɛ, ...

Popular culture

An example from popular culture would be the upside down year.

See also

  • Upside down year

References

1. ^{{cite web|last1=Schaaf|first1=William L.|title=Number game|url=https://www.britannica.com/topic/number-game#ref396109|website=Encyclopedia Britannica|accessdate=22 January 2017|date=March 1, 2016|origyear=1999}}
2. ^{{cite web|last1=Caldwell|first1=Chris K.|title=The Prime Glossary: strobogrammatic|url=http://primes.utm.edu/glossary/xpage/Strobogrammatic.html|website=primes.utm.edu|accessdate=22 January 2017}}
3. ^{{cite OEIS|1=A000787|2=Strobogrammatic numbers: the same upside down|accessdate=22 January 2017}}

External links

{{Prime number classes}}{{Classes of natural numbers}}

2 : Classes of prime numbers|Base-dependent integer sequences

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 4:52:12